博碩士論文 107223036 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.144.28.50
姓名 王奕媗(Yi-Syuan Wang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 三配位雙氧硼錯合物結構 及同雜環分子之液晶性質探討
相關論文
★ 具有benzoxazole結構之無機液晶材料★ 以1,3,4-thiadiazole為架構之不對稱無機液晶材料
★ 新穎香蕉形液晶及對稱含萘環之液晶分子★ 香蕉形無機液晶
★ 具有benzoxazole結構之有機及無機液晶材料★ 以1,3,4-thiadiazole為架構之無機盤狀液晶材料
★ 以benzoxazole為架構之無機桿狀液晶★ 具有Quinoxaline結構之雙金屬無機液晶材料
★ 星型液晶材料及磷光發光材料之合成與研究★ 含pyrazole及isoxazole之有機桿狀液晶
★ 矽咔哚與矽螺旋雙笏物質之放光性質研究★ 具有Benzobisthiazoles和Benzobisoxazoles結構之盤狀液晶材料
★ 含 Benzoxazole 之對稱二聚物其奇偶效應的探討★ 以電腦模擬研究香蕉型液晶元的分子交互作用力
★ 極性取代基對於彎曲型液晶分子的影響★ 由彎曲型分子形成盤狀液晶之探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 於近期的文獻中,含 BF2 之錯合物與多雜環系統被廣泛的合成與討論,BF2 complexes 因其特殊的光物理性質,在生物顯影、分子探針、發光材料、光感應器…等領域具有發展性,然而目前在液晶領域的例子為少數,且多數含 BF2 之液晶結構多為單、雙 BF2 配位,而三 BF2 配位至今未有文獻報導;雜環結構之組成常含有如:硫、氧、氮等陰電性大的原子,常可改變分子極性並產生donor-acceptor interaction,而此性質可能會影響液晶相行為。有鑑於本人所屬的實驗室所製備的含雜環結構實例,如:pyrazoles, isoxazoles, 1, 3, 4-oxadiazoles 等等,多呈現桿狀液晶,本論文探討含雜環結構之盤狀液晶的製備。
因此本研究以 1,3,5-三甲基苯三羧酸酯 (Trimethyl 1,3,5-benzenetricarboxylate) 作為核心,以 hexaketonates 連接外圍含苯環結構之烷氧長碳鏈合成配位基 2,並進而以 BF2 配位形成錯合物 1,以及合成 tris- pyrazole 及 tris- isoxazole 的相同雜環 3c 及 4c。其中化合物 1b, 2b, 1c, 4c 經偏光紋理圖與粉末 X-射線繞射實驗結果判定皆為 Colh 盤狀液晶,化合物 3c 經判定為 Colr 盤狀液晶。
為探討化合物的光物理性質,從紫外光/可見光光譜、螢光光譜結果得知:化合物 1a-1c 的最大放射波長較為紅移,且隨著烷氧鏈數目越多,放光波長也越為紅移。
摘要(英) During the past years, borondifluoride (BF2) complexes and heterocyclic rings have been continuously reported. Many known borondifluoride complexes as fluorescent materials applied in many areas; such as biological imagings, molecular probes, electroluminescent devices, photosensitizers and others were prepared and investigated. However, among them only a few examples were truly mesogenic. Most of examples of BF2 complexes on mesogenic are mono- and bis(borondifluoride) complexes. In this thesis, we propose a study on tris(boron difluoride) mesogens. As heterocyclic structures are generally incorporated of electronegative atoms S, O and N, heterocyclic rings can change molecular polarity and leads to donor-acceptor interactions within the molecules. And these properties can further affect the mesophase behavior. Quite a few examples, including pyrazoles, isoxazoles, 1, 3, 4-oxadiazoles, and others have been prepared and investigated in our laboratory. Most of them were formed smectic phases, whereas only a few of them exhibited columnar phases.
In this work, a new series of columnar borondifluoride complexes, containing trimethyl 1,3,5-benzenetricarboxylate as a central core substituted with three β-diketonate with three, six and nine terminal alkoxy groups and is described. All compounds were characterized by 1H and 13C NMR spectroscopy, polarized optical microscope (POM) and differential scanning calorimeter (DSC), and their structures were confirmed by X-ray diffraction (XRD) methods. Compounds 2b, 4c and 1b-c formed hexagonal columnar phases. Compounds 3c formed rectangular columnar phases. The photophysical properties of compounds 1-4 (n = 8) were investigated by UV-vis spectroscopy, fluorescence spectroscopy. Results appeared that the maximum emission wavelength of compounds 1 were found to be higher than the compounds 2 because BF2 is a strong electron acceptor which enhance donor acceptor charge transfer effect.
關鍵字(中) ★ 液晶 關鍵字(英) ★ liquid crystal
論文目次 中文摘要 i
Abstract ii
謝誌 iii
目錄 v
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1 液晶簡介與應用性 2
1-2 液晶分子的基礎架構 5
1-3 液晶作用力 7
1-4 液晶形成方式分類 9
1-4-1 向列型液晶 11
1-4-2 層列型液晶 11
1-4-3 盤狀液晶 12
1-5 Boron difluoride complex 簡介 13
1-6 五圓雜環簡介 15
1-7 研究動機 17
第二章 實驗部分 21
2-1 實驗藥品 22
2-2 儀器設備 23
2-3 實驗流程 30
2-3-1系列之實驗流程 30
2-4實驗步驟 32
2-4-1 系列之合成 32
第三章 結果與討論 50
3-1 化合物 1-4 性質探討 51
3-1-1結構與代號 51
3-1-2化合物 1H 與 19F NMR 探討 52
3-1-3化合物 1-4 之偏光紋理圖 (POM) 56
x3-1-4化合物 1-4 之熱微差掃描分析儀 (DSC) 60
3-1-5化合物 1-4 之熱重分析 (TGA) 64
3-1-6化合物 2b, 1b, 3c 及 4c 之 PXRD 分析與分子模擬排列 65
3-1-7化合物 1-4 之光物理性質探討 77
第四章 結論 81
第五章 曾製備之結構 83
5-1 化合物性質探討 84
5-1-1 化合物 5-6 結構與代號 84
5-1-2 化合物 5-6 之合成 85
5-1-3 化合物5-6 之 1H NMR 探討 93
5-1-3化合物 5-6 之偏光紋理圖 (POM) 94
5-2 化合物 7 性質探討 97
5-2-1 化合物 7 結構與代號 98
5-2-2 化合物 7 之合成 98
5-2-3化合物 7 之偏光紋理圖 (POM) 99
5-2-4結論 101
參考文獻 102
附圖 110
參考文獻 1. A. Schmidt and A. Dreger, Curr. Org. Chem., 2011, 15, 1423–1463.
2. A. Schmidt and A. Dreger, Curr. Org. Chem., 2011, 15, 2897–2920.
3. A. Sysak and B. Obmińska-Mrukowicz, Eur. J. Med. Chem.
4. A. V. Galenko, A. F. Khlebnikov, M. S. Novikov, V. V. Pakalnis and N. V. Rostovskii, Russ. Chem. Rev., 2015, 84, 335–377.
5. S. Ponra and K. C. Majumdar, RSC Adv., 2016, 6, 37784–37922.
6. J. T. Yu and C. Pan, Chem. Commun., 2016, 52, 2220–2236.
7. C. Qian, M. Liu, G. Hong, P. Xue, P. Gong and R. Lu, Org. Biomol. Chem., 2015, 13, 2986–2998.
8. M. Santra, H. Moon, M. H. Park, T. W. Lee, Y. K. Kim and K. H. Ahn, Chem. Eur. J., 2012, 18, 9886–9893.
9. X. Li and Y. A. Son, Dyes Pigm., 2014, 107, 182–187.
10. J. Massue, D. Frath, G. Ulrich, P. Retailleau and R. Ziessel, Org. Lett., 2012, 14, 230–233.
11. G. Zhang, G. M. Palmer, M. W. Dewhirst and C. L. Fraser., Nat. Mater., 2009, 8, 747–751.
12. S. Giordani, J. Bartelmess, M. Frasconi, I. Biondi, S. Cheung, M. Grossi, D. Wu, L. Echegoyen and D. F. O′Shea, J. Mater. Chem. B, 2014, 2, 7459–7463.
13. J. S. Lee, N. Y. Kang, Y. K. Kim, A. Samanta, S. Feng, H. K. Kim, M. Vendrell, J. H. Park and Y. T. Chang, J. Am. Chem. Soc., 2009, 131, 10077–10082.
14. A. Ojida, T. Sakamoto, M. A. Inoue, S. H. Fujishima, G. Lippens and I. Hamachi, J. Am. Chem. Soc., 2009, 131, 6543–6548.
15. T. Kowada, H. Maeda and K. Kikuchi, Chem. Soc. Rev., 2015, 44, 4953–4972.
16. M. Chapran, E. Angioni, N. J. Findlay, B. Breig, V. Cherpak, P. Stakhira, T. Tuttle, D. Volyniuk, J. V. Grazulevicius, Y. A. Nastishin, O. D. Lavrentovich and P. J. Skabara, ACS Appl. Mater. Interfaces, 2017, 9, 4750−4757.
17. Q. Tang, W. Si, C. Huang, K. Ding, W. Huang, P. Chen, Q. Zhang and X. Dong, J. Mater. Chem. B, 2017, 5, 1566–1573.
18. D. O. Frimannsson, M. Grossi, J. Murtagh, F. Paradisi and D. F. O’Shea, J. Med. Chem., 2010, 53, 7337–7343.
19. A. D’Aléo and F. Fages, Photochem. Photobiol. Sci., 2013, 12, 500–510.
20. M. Mamiya, Y. Suwa, H. Okamoto and M. Yamaji, Photochem. Photobiol. Sci., 2016, 15, 928–936.
21. D. J. Wang, B. P. Xu, X. H. Wei and J. Zheng, J. Fluorine Chem., 2012, 140, 49–53.
22. K. Ono, K. Yoshikawa, Y. Tsuji, H. Yamaguchi, R. Uozumi, M. Tomura, K. Taga and K. Saito, Tetrahedron, 2007, 63, 9354–9358.
23. R. Yoshii, A. Nagai, K. Tanaka and Y. Chujo, Macromol. Rapid Commun., 2014, 35, 1315−1319.
24. R. S. Singh, M. Yadav, R. K. Gupta, R. Pandey and D. S. Pandey, Dalton Trans., 2013, 42, 1696–1707.
25. M. J. Kwak and Y. Kim, Bull. Korean Chem. Soc., 2009, 30, 2865–2866.
26. K. Benelhadj, J. Massue and G. Ulrich, New J. Chem., 2016, 40, 5877–5884.
27. Q. Liu, X. Wang, H. Yan, Y. Wu, Z. Li, S. Gong, P. Liu and Z. Liu, J. Mater. Chem. C, 2015, 3, 2953–2959.
28. T. M. H. Vuong, J. Weimmerskirch-Aubatin, J. F. Lohier, N. Bar, S. Boudin, C. Labbé, F. Gourbilleau, H. Nguyen, T. T. Dang and Didier Villemin, New J. Chem., 2016, 40, 6070–6076.
29. Y. Meesala, V. Kavala, H. C. Chang, T. S. Kuo, C. F. Yao and W. Z. Lee, Dalton Trans., 2015, 44, 1120–1129.
30. W. Li, W. Lin, J. Wang and X. Guan, Org. Lett., 2013, 15, 1768–1771.
31. X. Zhang, H. Yu and Y. Xiao, J. Org. Chem., 2012, 77, 669−673.
32. S. M. Barbon, J. T. Price, P. A. Reinkeluers and J. B. Gilroy, Inorg. Chem., 2014, 53, 10585−10593.
33. H. M. Ko, J. Korean Chem. Soc., 2016, 60, 21−27.
34. A. D′Aléo, A. Felouat, V. Heresanu, A. Ranguis, D. Chaudanson, A. Karapetyan, M. Giorgi and F. Fages, J. Mater. Chem. C, 2014, 2, 5208–5215.
35. E. Cogné-Laage, J. F. Allemand, O. Ruel, J. B. Baudin, V. Croquette, M. Blanchard-Desce, and Ludovic Jullien, Chem. Eur. J., 2004, 10, 1445–1455.
36. L. A. Padilha, S. Webster, O. V. Przhonska, H. Hu, D. Peceli, T. R. Ensley, M. V. Bondar, A. O. Gerasov, Y. P. Kovtun, M. P. Shandura, A. D. Kachkovski, D. J. Hagan and E. W. Van Stryland, J. Phys. Chem. A, 2010, 114, 6493–6501.
37. C. Ran, X. Xu, S. B. Raymond, B. J. Ferrara, K. Neal, B. J. Bacskai, Z. Medarova and A. Moore, J. Am. Chem. Soc., 2009, 131, 15257–15261.
38. M. J. Mayoral, P. Ovejero, M. Cano and G. Orellana, Dalton Trans., 2011, 40, 377–383.
39. A. Sakai, M. Tanaka, E. Ohta, Y. Yoshimoto, K. Mizuno and H. Ikeda, Tetrahedron Lett., 2012, 53, 4138–4141.
40. G. Zhang, J. Chen, S. J. Payne, S. E. Kooi, J. N. Demas and C. L. Fraser, J. Am. Chem. Soc., 2007, 129, 8942–8943.
41. Y. Sun, D. Rohde, Y. Liu, L. Wan, Y. Wang, W. Wu, C. Di, G. Yu and D. Zhu, J. Mater. Chem., 2006, 16, 4499–4503.
42. C. A. DeRosa, J. Samonina-Kosicka, Z. Fan, H. C. Hendargo, D. H. Weitzel, G. M. Palmer and C. L. Fraser, Macromolecules, 2015, 48, 2967−2977.
43. R. Yoshii, A. Nagai, K. Tanaka and Y. Chujo, Chem. Eur. J., 2013, 19, 4506–4512.
44. R. Tan, Q. Lin, Y. Wen, S. Xiao, S. Wang, R. Zhang and T. Yi, CrystEngComm, 2015, 17, 66746680.
45. A. Loudet and K. Burgess, Chem. Rev., 2007, 107, 4891−4932.
46. N. Boens, V. Leen and W. Dehaen, Chem. Soc. Rev., 2012, 41, 1130–1172.
47. J. Bañuelos, F. L. Arbeloa, T. Arbeloa, V. Martinez and I. L. Arbeloa, Applied Science Innovations Pvt. Ltd. 2012.
48. J.-H. Olivier, F. Camerel, G. Ulrich, J. Barberá and R. Ziessel, Chem. Eur. J., 2010, 16, 7134–7142.
49. F. Camerel, L. Bonardi, G. Ulrich, L. Charbonnière, B. Donnio, C. Bourgogne, D. Guillon, P. Retailleau and R. Ziessel, Chem. Mater., 2006, 18, 5009–5021.
50. F. Camerel, L. Bonardi, M. Schmutz and R. Ziessel, J. Am. Chem. Soc., 2006, 128, 4548–4549.
51. S. M. Barbon, V. N. Staroverov, P. D. Boyle and J. B. Gilroy, Dalton Trans., 2014, 43, 240–250.
52. M. C. Chang, A. Chantzis, D. Jacquemin and E. Otten, Dalton Trans., 2016, 45, 9477–9484.
53. S. M. Barbon, J. T. Price, U. Yogarajah and J. B. Gilroy, RSC Adv., 2015, 5, 56316–56324.
54. M. C. Chang and E. Otten, Chem. Commun., 2014, 50, 7431–7433.
55. S. M. Barbon, V. N. Staroverov and J. B. Gilroy, J. Org. Chem., 2015, 80, 5226−5235.
56. A. Kamal, A. B. Shaik, B. B. Rao, I. Khan, G. B. Kumara and N. Jain, Org. Biomol. Chem., 2015, 13, 10162–10178.
57. H. Chuang, L. C. S. Huang, M. Kapoor, Y. J. Liao, C. L. Yang, C. C. Chang, C. Y. Wu, J. R. Hwu, T. J. Huang and M. H. Hsu, Med. Chem. Commun., 2016, 7, 832–836.
58. L. Yan, J. Wu, H. Chen, S. Zhang, Z. Wang, H. Wang and F. Wu, RSC Adv., 2015, 5, 73660–73669.
59. T. S. Kamatchi, P. Kalaivani, F. R. Fronczek, K. Natarajan and R. Prabhakaran, RSC Adv., 2016, 6, 46531–46547.
60. H. Andleeb, Y. Tehseen, S. J. A. Shah, I. Khan, J. Iqbal and S. Hameed, RSC Adv., 2016, 6, 77688–77700.
61. B. A. Chalyk, I. Y. Kandaurova, K. V. Hrebeniuk,
O. V. Manoilenko, I. B. Kulik, R. T. Iminov, V. Kubyshkin, A. V. Tverdokhlebov, O. K. Ablialimov and P. K. Mykhailiuk, RSC Adv., 2016, 6, 25713–2572.
62. J. Fernández, J. Chicharro, J. M. Bueno and M. Lorenzo, Chem. Commun., 2016, 52, 10190–10192.
63. I. Triandafillidi and C. G. Kokotos, Org. Lett., 2017, 19, 106–109.
64. H. Yu, P. Ge, J. Chen, H. Xie and Yi Luo,
Environ. Sci.: Processes Impacts, 2017, 19, 379–387.
65. K. T. Lin, G. H. Lee and C. K. Lai, Tetrahedron, 2015, 71, 4352–4361.
66. H. H. G. Tsai, L. C. Chou, S. C. Lin, H. S. Sheu and C. K. Lai, Tetrahedron Lett., 2009, 50, 1906–1910.
67. K. T. Lin and C. K. Lai, Tetrahedron, 2016, 72, 7579–7588.
68. K. T. Lin, H. M. Kuo, H. S. Sheu and C. K. Lai, Tetrahedron, 2014, 70, 6457–6466.
69. S. Y. Chou, C. J. Chen, S. L. Tsai, H. S. Sheu,G. H. Lee and C. K. Lai, Tetrahedron, 2009, 65, 1130–1139.
70. M. C. Chen, S. C. Lee, C. C. Ho, T. S. Hu, G. H. Lee and C. K. Lai, Tetrahedron, 2009, 65, 9460–9467.
71. T. Ikeda, T. Iijima, R. Sekiya, O. Takahashi and T. Haino, J. Org. Chem., 2016, 81, 6832–6837.
72. R. J. Fox, C. E. Markwalter, M. Lawler, K. Zhu, J. Albrecht, J. Payack and M. D. Eastgate. Org. Process Res. Dev., 2017, 21, 754–762.
73. D. Nagaraju, E. Rajanarendar, P. P. Kumar and M. N. Reddy, New J. Chem., 2017, 41, 4783–4787.
74. Q. Jin, J. Li, L. Zhang, S. Fanga and M. Liu, CrystEngComm, 2015, 17, 8058–8063.
75. C. T. Liao, Y. J. Wang, C. S. Huang, H. S. Sheu, G. H. Lee and C. K. Lai, Tetrahedron, 2007, 63, 12437–12445.
76. T. S. Hu, K. T. Lin, C. C. Mu, H. M. Kuo, M. C. Chen and C. K. Lai, Tetrahedron, 2014, 70, 9204–9213.
77. A. C. Götzinger, F. A. Theßeling, C. Hoppe and T. J. J. Müller, J. Org. Chem., 2016, 81, 10328–10338.
78. C. Cuerva, J. A. Campo, M. Cano, J. Sanz, I. Sobrados, V. Diez-Gómez, A. Rivera-Calzada and R. Schmidt, Inorg. Chem., 2016, 55, 6995–7002.
79. B. W. Cong, Z. H. Su, Z. F. Zhao, B. Y. Yu, W. Q. Zhao and X. J. Ma, Dalton Trans., 2017, 46, 7577–7583.
80. J. Li, G. Dong, L. Duan, D. Ma, T. Hu, Y. Zhang, L. Wang and Y. Qiu, RSC Adv., 2014, 4, 51294–51297.
81. C. M. Che, C. F. Chow, M. Y. Yuen, V. A. L. Roy, W. Lu, Y. Chen, S. S. Y. Chui and N. Zhu, Chem. Sci., 2011, 2, 216–220.
82. J. L. Liao, Y. Chi, J. Y. Wang, Z. N. Chen, Z. H. Tsai, W. Y. Hung, M. R. Tseng, and G. H. Lee, Inorg. Chem., 2016, 55, 6394–6404.
83. J. H. Yum, T. Moehl, J. Yoon, A. K. Chandiran, F. Kessler, P. Gratia, and M. Grätzel, J. Phys. Chem. C, 2014, 118, 16799–16805.
84. H. Kusama, H. Sugihara and K. Sayama, J. Phys. Chem. C, 2009, 113, 48.
85. K. L. Wu, A. J. Huckaba, J. N. Clifford, Y. W. Yang, A. Yella, E. Palomares, M. Grätzel, Y. Chi and M. K. Nazeeruddin, Inorg. Chem., 2016, 55, 7388–7395.
86. F. Strinitz, J. Tucher, J. A. Januszewski, A. R. Waterloo, P. Stegner, S. Förtsch, E. Hübner, R. R. Tykwinski and N. Burzlaff, Organometallics, 2014, 33, 5129–5144.
87. H. M. Kuo, S. Y. Li, H. S. Sheu and C. K. Lai, Tetrahedron, 2012, 68, 7331–7337.
88. K. T. Lin, H. M. Kuo, H. S. Sheu and C. K. Lai, Tetrahedron, 2013, 69, 9045–9055.
89. H. M. Kuo, Y. L. Chen, G. H. Lee and C. K. Lai, Tetrahedron, 2016, 72, 6843–6853.
90. C. K. Lai, Y. C. Ke, J. C. Su, C. Shen and W. R. Li, Liq. Cryst., 2002, 29, 915–920.
91. C. Cuerva, J. A. Campo, P. Ovejero, M. R. Torresb and M. Cano, Dalton Trans., 2014, 43, 8849–8860.
92. C. Cuerva, J. A. Campo, P. Ovejero, M. R. Torres, E. Oliveira, S. M. Santos, C. L. and M. Cano, J. Mater. Chem. C, 2014, 2, 9167–9181.
93. W. C. Shen, Y. J. Wang, K. L. Cheng, G. H. Lee and C. K. Lai, Tetrahedron, 2006, 62, 8035–8044.
94. S. Kuwata and T. Ikariya, Chem. Commun., 2014, 50, 14290–14300.
95. W. Ye, X. Xiao, L. Wang, S. Hou and C. Hu, Organometallics., 2017, 36, 2116–2125.
96. S. Kalaivani and T. Narasimhaswamy, J. Phys. Chem. B, 2011, 115, 11554–11565.
97. M. Roohnikan, V. Toader, A. Rey and L. Reven, Langmuir, 2016, 32, 8442–8450.
98. Y. Cai, M. Zheng, Y. Zhu, X. F. Chen, and C. Y. Li, ACS Macro Lett., 2017, 6, 479–484.
99. H. Y. Lin, H. M. Kuo, S. G. Wen, H. S. Sheu, G. H. Lee and C. K. Lai, Tetrahedron, 2012, 68, 6231–6239.
100. M. Denißen,J. Nordmann, J. Dziambor, B. Mayer, W. Frankb
and Thomas J. J. Muller.
101. 謝昌樺, 碩士論文,中央大學化學研究所,民國一百零七年.
指導教授 賴重光(Chung-Kung Lai) 審核日期 2020-7-23
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明