博碩士論文 107223064 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:3.147.89.85
姓名 林慧絜(Hui-Jie Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱
(Design of Panchromatic Metalloporphyrin Sensitizers owning Multiple Types of Transitions including D--A and Singlet and Spin-Orbit Coupling Activated Triplet Metal-to-Anchor Charge Transfers for Dye-sensitized Solar Cells)
相關論文
★ 嗜甲烷菌內甲烷單氧化酵素中催化反應中心三核銅模擬分子之合成與光譜分析★ 烷烴氧化菌及氧化酵素之純化與功能性探討
★ 以電腦模擬研究香蕉型液晶元的分子交互作用力★ 利用時間相關的電子密度泛函理論研究反式-二苯乙烯胺的光化學行為
★ 以生物資訊法研究穩定Asparagine在左手螺旋形下的交互作用力★ 葛蘭氏陰性菌脂質A之結構研究
★ 五苯荑衍生之苯乙炔寡聚物之合成與光物理性質研究★ 紫質三元件系統的金屬化作用對遠端氫鍵調控的影響
★ 非鍵結作用力的理論研究: (1)質子化與氧化三元件系統遠端調控氫鍵的比較 (2)π- π與CH- π作用力的取代基效應★ 利用時間相關的密度泛涵理論研究HBI分子及其衍生物在第一激發態的位能曲線
★ Replica-Exchange分子動態模擬法研究類澱粉胜肽25-35 嵌入膜與折疊的行為★ 抗菌胜肽資料庫分析及利用分子動態模擬法探討抗菌胜肽Indolicidin於生物膜上的行為
★ 網頁圖形界面在分子模擬上的應用★ 類澱粉胜肽Abeta(25-35) 序列影響該類胜肽在水-膜環境下的組態: 強調多樣性的神經毒性
★ 以分子動態模擬法研究陽離子-負電磷脂質雙層的配位網絡結構:延伸應用於膜融合機制★ 染料敏化太陽能電池吸光性質的計算研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們使用密度泛函理論(TD-DFT)與spin–orbit coupling effect(SOC effect)來模擬計算把YD2-o-C8作為骨架的porphyrin染料中心金屬Zn換成Ru和Os,使用Cl-或PPh(OMe)2連接中心金屬,成為六配位的porphyrins,研究染料的電子結構和吸收光譜。具有兩個Cl-配位的Ru-和Os-porphyrins在near IR / IR區域邊緣顯示出較弱的吸收,這在原始的YD2-o-C8染料中沒有觀察到的。在長波長邊緣有吸收是源自金屬到受體的電荷轉移(MACT),並進一步由具有重的Ru和Os原子的SOC effect造成紅位移的現象。另一方面,使用PPh(OMe)2 作為ligands的染料在near IR區域不產生吸收,結果可得PPh(OMe)2 ligand能穩定修飾Ru-和Os-porphyrins的“ t2g”軌道。另外也觀察到PPh(OMe)2連接的porphyrins有SOC effect。這項研究表明,將Ru和Os重原子引入以Cl-作為ligands的porphyrins可以誘導在長波長吸收的金屬到受體的電荷轉移,並進一步增強SOC effect,使吸收紅位移。研究結果為設計長波長躍遷提供了一種新方法,同時又保留了原有的染料骨架。
摘要(英) We investigate the electronic structures and absorption spectra for Ru- and
Os-porphyrins ligated with Cl− or PPh(OMe)2 using an Zn-based YD2-o-C8 skeleton
as well as YD2-o-C8 and YD2 dyes by time-dependent density functional theory
(TD-DFT) with spin–orbit coupling (SOC) interactions. The Ru- and Os-porphyrins
modified with two Cl− as ligands exhibit a weak absorption onset in the near IR/IR
region, which is not observed in that of original YD2-o-C8 dye. The long wavelength
absorption edge originates from the metal to acceptor charge transfer MACT and is
further red-shifted from SOC with heavy Ru and Os atoms. On the other hand, the
PPh(OMe)2 ligands stabilizing the “t2g” orbitals of the modified Ru- and
Os-porphyrins do not induce absorption in the near IR region. However, SOC is also
observed for PPh(OMe)2 ligated Ru- and Os-porphyrins. This study shows that the
introduction of heavy Ru and Os atoms into porphyrin skeleton with Cl- as ligands can
induce long wavelength metal-to-acceptor charge transfer and further enhance the
SOC, red-shifting the absorption. This result offers a new approach for designing long
wavelength transitions, while remaining the original dye framework.
關鍵字(中) ★ DSSC
★ porphyrin
★ Spin-Orbit Coupling
★ Metalloporphyrin
關鍵字(英)
論文目次 摘要 I
Abstract II
Contents III
List of Scheme IV
List of Figures IV
List of Tables VI
Chapter 1—Introduction 1
Chapter 2—Computational Methods 6
Chapter 3—Results and Discussion 9
3.1 Geometrical Parameters of Studied Molecules 9
3.2 Electronic Structure and Absorption Spectra of YD2 and YD2-o 11
3.3 Electronic Structure and Absorption Spectra of YD2-o-Ru-2Cl and YD2-o-Ru-2P 22
3.4 Electronic Structure and Absorption Spectra of YD2-o-Os-2Cl and YD2-o-Os-2Cl 37
Chapter 4—Conclusions 49
References 51
Supporting Information 54
參考文獻 1. (a) O′Regan, B.; Grätzel, M., A low-cost, high-efficiency solar cell based on dye-sensitized colloidal TiO2 films. Nature 1991, 353 (6346), 737-740; (b) Grätzel, M., Dye-sensitized solar cells. Journal of Photochemistry and Photobiology C: Photochemistry Reviews 2003, 4 (2), 145-153; (c) Ripolles-Sanchis, T.; Guo, B. C.; Wu, H. P.; Pan, T. Y.; Lee, H. W.; Raga, S. R.; Fabregat-Santiago, F.; Bisquert, J.; Yeh, C. Y.; Diau, E. W., Design and characterization of alkoxy-wrapped push-pull porphyrins for dye-sensitized solar cells. Chem. Commun. 2012, 48 (36), 4368-70; (d) Higashino, T.; Imahori, H., Porphyrins as excellent dyes for dye-sensitized solar cells: recent developments and insights. Dalton transactions 2015, 44 (2), 448-63; (e) Gong, J.; Sumathy, K.; Qiao, Q.; Zhou, Z., Review on dye-sensitized solar cells (DSSCs): Advanced techniques and research trends. Renewable and Sustainable Energy Reviews 2017, 68, 234-246.
2. Mishra, A.; Fischer, M. K.; Bauerle, P., Metal-free organic dyes for dye-sensitized solar cells: from structure: property relationships to design rules. Angew. Chem. Int. Ed. 2009, 48 (14), 2474-99.
3. Chen, C.-Y.; Wu, S.-J.; Wu, C.-G.; Chen, J.-G.; Ho, K.-C., A Ruthenium Complex with Superhigh Light-Harvesting Capacity for Dye-Sensitized Solar Cells. Angew. Chem. Int. Ed. 2006, 45 (35), 5822-5825.
4. Kinoshita, T.; Dy, J. T.; Uchida, S.; Kubo, T.; Segawa, H., Wideband dye-sensitized solar cells employing a phosphine-coordinated ruthenium sensitizer. Nat. Photon. 2013, 7 (7), 535-539.
5. (a) Nazeeruddin, M. K.; Pechy, P.; Renouard, T.; Zakeeruddin, S. M.; Humphry-Baker, R.; Comte, P.; Liska, P.; Cevey, L.; Costa, E.; Shklover, V.; Spiccia, L.; Deacon, G. B.; Bignozzi, C. A.; Gratzel, M., Engineering of efficient panchromatic sensitizers for nanocrystalline TiO(2)-based solar cells. J. Am. Chem. Soc. 2001, 123 (8), 1613-24; (b) Han, L.; Islam, A.; Chen, H.; Malapaka, C.; Chiranjeevi, B.; Zhang, S.; Yang, X.; Yanagida, M., High-efficiency dye-sensitized solar cell with a novel co-adsorbent. Energ Environ. Sci. 2012, 5 (3), 6057.
6. Fantacci, S.; Ronca, E.; De Angelis, F., Impact of Spin-Orbit Coupling on Photocurrent Generation in Ruthenium Dye-Sensitized Solar Cells. J Phys Chem Lett 2014, 5 (2), 375-80.
7. Juwita, R.; Lin, J.-Y.; Lin, S.-J.; Liu, Y.-C.; Wu, T.-Y.; Feng, Y.-M.; Chen, C.-Y.; Gavin Tsai, H.-H.; Wu, C.-G., Osmium sensitizer with enhanced spin–orbit coupling for panchromatic dye-sensitized solar cells. J. Mater. Chem. A 2020.
8. (a) Gouterman, M., Study of the Effects of Substitution on the Absorption Spectra of Porphin. J. Chem. Phys. 1959, 30 (5), 1139-1161; (b) Gibson, J. F.; Ingram, D. J. E., Location of Free Electrons in Porphin Ring Complexes. Nature 1956, 178 (4538), 871-872; (c) Jansen, G.; Noort, M., High resolution spectra of zinc porphin and magnesium porphin in a n-octane matrix at 4.2 K. Effect of the addition of ethanol and other solvents. Spectrochimica Acta Part A: Molecular Spectroscopy 1976, 32 (4), 747-753; (d) Hashimoto, T.; Choe, Y. K.; Nakano, H.; Hirao, K., Theoretical study of the Q and B bands of free-base, magnesium, and zinc porphyrins, and their derivatives. J. Phys. Chem. A 1999, 103 (12), 1894-1904.
9. (a) Wang, C.-L.; Chang, Y.-C.; Lan, C.-M.; Lo, C.-F.; Wei-Guang Diau, E.; Lin, C.-Y., Enhanced light harvesting with π-conjugated cyclic aromatic hydrocarbons for porphyrin-sensitized solar cells. Energ Environ. Sci. 2011, 4 (5), 1788; (b) Tang, Y.; Wang, Y.; Li, X.; Agren, H.; Zhu, W. H.; Xie, Y., Porphyrins Containing a Triphenylamine Donor and up to Eight Alkoxy Chains for Dye-Sensitized Solar Cells: A High Efficiency of 10.9%. ACS Appl Mater Interfaces 2015, 7 (50), 27976-85; (c) Chang, Y. C.; Wang, C. L.; Pan, T. Y.; Hong, S. H.; Lan, C. M.; Kuo, H. H.; Lo, C. F.; Hsu, H. Y.; Lin, C. Y.; Diau, E. W., A strategy to design highly efficient porphyrin sensitizers for dye-sensitized solar cells. Chem. Commun. 2011, 47 (31), 8910-2; (d) Chou, H. H.; Reddy, K. S.; Wu, H. P.; Guo, B. C.; Lee, H. W.; Diau, E. W.; Hsu, C. P.; Yeh, C. Y., Influence of Phenylethynylene of Push-Pull Zinc Porphyrins on the Photovoltaic Performance. ACS Appl Mater Interfaces 2016, 8 (5), 3418-27.
10. Yella, A.; Lee, H. W.; Tsao, H. N.; Yi, C.; Chandiran, A. K.; Nazeeruddin, M. K.; Diau, E. W.; Yeh, C. Y.; Zakeeruddin, S. M.; Gratzel, M., Porphyrin-sensitized solar cells with cobalt (II/III)-based redox electrolyte exceed 12 percent efficiency. Science 2011, 334 (6056), 629-34.
11. Bessho, T.; Zakeeruddin, S. M.; Yeh, C. Y.; Diau, E. W.; Gratzel, M., Highly efficient mesoscopic dye-sensitized solar cells based on donor-acceptor-substituted porphyrins. Angew. Chem. Int. Ed. 2010, 49 (37), 6646-9.
12. (a) Shalabi, A. S.; Abdel Aal, S.; El Mahdy, A. M., The effect of ruthenium on the performance of porphyrin dye and porphyrin–fullerene dyad solar cells predicted by DFT and TD-DFT calculations. Molecular Simulation 2013, 39 (9), 689-699; (b) Ladomenou, K.; Nikolaou, V.; Charalambidis, G.; Sharma, G. D.; Coutsolelos, A. G., Ru(II) porphyrins as sensitizers for DSSCs: Axial vs. peripheral carboxylate anchoring group. J. Porphyrins Phthalocyanines 2019, 23 (07n08), 870-880; (c) Che, C.-M.; Huang, J.-S., Ruthenium and osmium porphyrin carbene complexes: synthesis, structure, and connection to the metal-mediated cyclopropanation of alkenes. Coord. Chem. Rev. 2002, 231 (1-2), 151-164; (d) Berkessel, A.; Erturk, E.; Kaiser, P.; Klein, A.; Kowalczyk, R. M.; Sarkar, B., On the redox states of ruthenium porphyrin oxidation catalysts. Dalton transactions 2007, (31), 3427-34; (e) Antipas, A.; Buchler, J. W.; Gouterman, M.; Smith, P. D., Porphyrins. 36. Synthesis and optical and electronic properties of some ruthenium and osmium octaethylporphyrins. J. Am. Chem. Soc. 1978, 100 (10), 3015-3024.
13. (a) Che, C. M.; Chung, W. C.; Lai, T. F., Synthesis, reactivity, and X-ray structural characterization of trans-dioxoosmium (VI) porphyrin complexes. Inorg. Chem. 1988, 27 (16), 2801-2804; (b) Djukic, J.-P.; Smith, D. A.; Young, V. G., Jr.; Woo, L. K., Properties and Molecular Structures of Osmium(II) Porphyrin Carbene Complexes: (5,10,15,20-tetra-p-tolylporphyrinato)osmium Di-p-tolylmethylidene and (5,10,15,20-tetra-p-tolylporphyrinato)osmium (Trimethylsilyl)methylidene. Organometallics 1994, 13 (8), 3020-3026; (c) Sawano, K.; Yuge, H.; Miyamoto, T. K., Synthesis of a new oxo-bridged osmium porphyrin carbene complex and its structural characterization. Inorg. Chim. Acta 2005, 358 (6), 1830-1834.
14. (a) Gouterman, M.; Wagniere, G. H.; Snyder, L. C., Spectra of Porphyrins. Part II. Four Orbital Model. J. Mol. Spectr. 1963, 11, 108-127; (b) Gouterman, M., Spectra of Porphyrins. J. Mol. Spectr. 1961, 6, 138-163.
指導教授 蔡惠旭 審核日期 2020-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明