博碩士論文 107324065 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:21 、訪客IP:3.141.25.125
姓名 彭文正(Wen-Zheng Peng)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 探討以Lactobacillus buchneri發酵巴西蘑菇並產生 γ-氨基丁酸之研究
(Evaluation that produce γ-aminobutyric acid during Agaricus blazei Murrill fermentation by Lactobacillus buchneri BCE11915)
相關論文
★ 探討菌體形態對於裂褶菌多醣體之影響★ 探討不同培養方式對猴頭菇抗氧化與抗腫瘤性質的影響
★ 探討不同培養溫度Aspergillus niger 對丹參之機能性影響★ 光合菌在光生物反應器產氫之研究
★ 探討培養溫度對巴西蘑菇液態醱酵之影響★ 利用批式液態培養來探討檸檬酸對裂褶菌生長及其多醣體生成影響之研究
★ 探討不同培養基組成對光合菌Rhodobacter sphaeroides生產Coenzyme Q10之研究★ 利用混合特定菌種生產氫氣之研究
★ 探討氧化還原電位作為Clostridium butyricum連續產氫之研究★ 探討培養基之pH值與Xanthan gum的添加對巴西蘑菇多醣體生產之影響
★ 探討麩胺酸的添加和供氧量對液態發酵生產裂褶菌多醣體之研究★ 探討以兩水相系統提昇Clostridium butyricum產氫之研究
★ 探討通氣量對於樟芝醱酵生產生物鹼之影響★ 探討深層發酵中環境因子對巴西洋菇生產多醣之影響
★ 探討通氣量對於樟芝發酵生產與純化脂解酵素之研究★ 探討以活性碳吸附酸來提昇Clostridium butyricum產氫之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-9-1以後開放)
摘要(中) 長久以來,食用蘑菇因其營養價值和藥用特性而深受人們的消費與讚賞。巴西蘑菇(Agaricus blazei Murill)是一種源自於巴西東南部山區的傘菌屬真菌,因具有許多活性物質而廣受大家注目,尤其是抗腫瘤多醣體,在諸多文獻中都進行廣泛深入的研究。但由於目前缺乏巴西蘑菇與乳酸菌的相關研究,因此本論文目的為將自行分離篩選之乳酸菌與巴西蘑菇子實體及菌絲體進行發酵,並產生高含量γ-氨基丁酸(GABA)之發酵(液)產品,藉以評估巴西蘑菇作為發酵培養基之發展潛力。
在自然發酵的巴西蘑菇樣品液中,我們成功篩選出BCE119151乳酸菌株,並顯示出最高GABA產生能力。根據革蘭氏染色、生化試驗及16S rDNA序列測定結果,表明BCE119151為Lactobacillus buchneri(布氏乳桿菌)。在結合子實體發酵部分,使用BCE119151可成功發酵巴西蘑菇和黃豆粉混合物(ABSFS)。根據實驗結果,於初始pH 6.0、37℃ 操作條件下,可產生27.34 g/L GABA產量、 59.6% GABA轉化率;在未添加Monosodium glutamate (MSG)情況下,也可成功轉化出214 mg/L的GABA含量。在結合菌絲體發酵部分,利用豆漿作為第一階段巴西蘑菇菌絲體培養基並進行搖瓶發酵,再以連續式操作接著第二階段乳酸菌發酵,成功地在最大菌絲重情況下,發酵轉化出24.54 g/L的GABA含量、其GABA轉化率為62.6%;未添加MSG情況下,也可於最大麩胺酸含量下轉化出149 mg/L的GABA含量。綜合上述結果,巴西蘑菇與L. buchneri BCE119151結合進行發酵,可發展出具有高營養價值和功能特性之GABA發酵產品,並應用於相關飲品及其保健食品開發。
摘要(英) For many years, edible mushrooms have been consumed and appreciated by their nutritional value, and medicinal properties. Agaricus blazei Murrill (ABM) is a mushroom native from Brazil largely studied due to its bioactive compounds, particularly polysaccharides. The aim of this work was to evaluate the potential of ABM as basal medium for the lactic acid fermentation of high γ-aminobutyric acid (GABA)-producing strain which was isolated from fermented edible mushroom. Owing to the lack of a detailed study on fermented ABM with lactic acid bacteria (LAB), the current study was employed to exploit and optimize the fermentation condition for the production of GABA with LAB.
LAB that accumulated GABA in culture medium were screened to identify strains with high GABA-producing ability. One strain, BCE119151, showed the highest GABA-producing ability among the screened strains. BCE119151 was identified as Lactobacillus buchneri based on Gram-staining, metabolic characteristics, and 16S rDNA sequence determination. ABM fruiting bodies powder and soybean flour mixture (ABSF) was successfully fermented using BCE119151. According to our results, the fermentation was optimized using the ABSF mixture (ABMP: soybean flour=2.5:1), with BCE119151, at an initial pH of 6.0, the incubation temperature at 37 degrees C for 7 days. Under these conditions, BCE119151 produced GABA at a concentration of 27.34 g/L with a 59.6% GABA conversion rate, it was also successfully produced 214 mg/L of GABA content without added MSG.
In addition, the first soymilk mycelial fermantation with BCE119151, 24.54 g/L of GABA was produced from the mycelial soymilk medium in maximum of TITC1 biomass and with a 62.6% GABA conversion rate.It was also produced 149 mg/L of GABA content without added MSG.The results suggested that the Agaricus blazei Murrill and L. buchneri BCE119151 possessed a prospect to be applied in fermented plant beverages and other health products with high nutritive values and functional properties.
關鍵字(中) ★ 巴西蘑菇
★ 菌絲體
★ 乳酸菌
★ 豆漿
★ GABA
關鍵字(英)
論文目次 摘要(Abstract) i
致謝 iii
目錄 iv
圖目錄 viii
表目錄 xi
一、緒論 1
1-1 研究動機 1
1-2 研究目的 2
二、文獻回顧 3
2-1 巴西蘑菇(Agaricus blazei Murill) 3
2-1-1巴西蘑菇的基本介紹 3
2-1-2巴西蘑菇的成分組成 3
2-1-3巴西蘑菇的生物活性物質 8
2-1-4巴西蘑菇的藥理研究 14
2-2 乳酸菌(Lactic acid bacteria) 16
2-2-1 乳酸菌的基本介紹 16
2-2-2 益生菌的基本介紹 20
2-2-3 Lactobacillus buchneri的介紹 21
2-2-4 乳酸菌發酵飲品介紹 22
2-3 乳酸菌產生的生物活性物質 25
2-3-1 γ-氨基丁酸(GABA) 25
2-3-2 硫代葡萄糖苷(Glucosinolates) 27
2-3-3 共軛亞麻油酸(Conjugated linoleic acid,CLA) 29
2-4 影響發酵工程的物化因子 31
2-4-1 培養基組成 31
2-4-2 pH值 33
2-4-3 溫度 34
2-4-4 攪拌速率 34
三、材料與方法 35
3-1 實驗架構 35
3-2 實驗材料 37
3-2-1 實驗菌株 37
3-2-2 實驗樣品 37
3-2-3 實驗藥品 38
3-2-4 實驗儀器與設備 40
3-3 實驗方法 42
3-3-1 乳酸菌分離純化 42
3-3-2 高GABA乳酸菌株篩選 43
3-3-3 高GABA乳酸菌株之相關特性測試 43
3-3-4 Lactobacillus buchneri BCE119151菌株保存及活化 44
3-3-5 Lactobacillus buchneri BCE119151種菌源製備 45
3-3-6 巴西蘑菇子實體發酵最適化條件探討 46
3-3-7 巴西蘑菇子實體發酵-操作條件探討 47
3-3-8 巴西蘑菇子實體發酵-GABA產量最適化探討 48
3-3-9 巴西蘑菇子實體發酵-發酵優化條件探討 48
3-3-10巴西蘑菇子實體發酵-不添加MSG 48
3-3-11 巴西蘑菇菌株保存及活化甘油保存 49
3-3-12 巴西蘑菇菌株液態搖瓶發酵 49
3-3-13 巴西蘑菇菌絲體發酵-第一階段搖瓶發酵 51
3-3-14 巴西蘑菇菌絲體發酵-第二階段乳酸菌厭氧發酵 52
3-4 分析方法 54
3-4-1 生化特性試驗 54
3-4-2 乳酸菌菌體濃度分析 55
3-4-3 pH值分析 55
3-4-4 菌落數分析(平板菌落計數法) 55
3-4-5 菌絲體乾重分析 56
3-4-6 還原糖濃度分析 56
3-4-7 總可溶性糖濃度分析 57
3-4-8 多醣體濃度分析 58
3-4-9 GABA及MSG含量分析 59
3-4-10 游離麩胺酸(Glutamic acid)分析 61
3-4-11 GAD酵素活性分析 63
四、結果與討論 65
4-1 乳酸菌分離純化 65
4-2 高GABA乳酸菌株篩選 66
4-3 高GABA乳酸菌株之相關特性測試 67
4-3-1 生化特性試驗及菌種鑑定 67
4-3-2 生長曲線及GABA發酵動力曲線 68
4-4 巴西蘑菇子實體發酵最適化條件探討 70
4-4-1 額外高蛋白營養源添加 70
4-4-2 調整A/S ratio組成(ABMP / Soy flour) 72
4-4-3 最適碳源添加 74
4-4-4 巴西蘑菇子實體發酵最適化條件之結論 77
4-5 巴西蘑菇子實體發酵-優化條件探討 79
4-6 巴西蘑菇子實體發酵-操作條件探討 81
4-6-1 不同溫度及pH值對發酵結果之影響 81
4-6-2 不同培養溫度對pH值及可溶性糖消耗量之影響 83
4-6-3 不同培養溫度對MSG及GABA含量之影響 85
4-6-4 不同培養溫度之發酵動力曲線 86
4-6-5 巴西蘑菇子實體發酵-操作條件探討之結論 88
4-7 巴西蘑菇子實體發酵-GABA產量最適化探討 90
4-8 巴西蘑菇子實體發酵(不添加MSG) 93
4-9 巴西蘑菇(Agaricus blazei Murrill)菌株液態搖瓶發酵 95
4-9-1 液態搖瓶發酵之游離麩胺酸含量探討 95
4-10 巴西蘑菇菌絲體發酵-第一階段搖瓶發酵 97
4-10-1 最適豆漿培養基固液比 97
4-10-1 巴西蘑菇菌絲體之豆漿培養基發酵動力曲線 98
4-11 巴西蘑菇菌絲體發酵-第二階段乳酸菌厭氧發酵 100
4-11-1 最大菌絲體重下進行乳酸菌發酵 100
4-11-2 最大粗多醣體含量下進行乳酸菌發酵 101
4-11-3 最大游離麩胺酸含量下進行乳酸菌發酵(不添加MSG)
102
4-12 巴西蘑菇子實體及菌絲體發酵之結論 103
五、結論 105
參考文獻 107
附錄 114
參考文獻 [1] 財團法人台灣必安研究所。檢自https://www.brion.org.tw/article-2-content.php?FatherNo=4&LevelNo=&Seq=8497&LevelName=-ifbase4-base60-JUU3JUI0JTkzJUU1JUEzJTkzJUUzJTgwJTgxJUU1JUFFJTg5J
UU3JTlDJUEw.
[2] H. Wang, Z. Fu, and C. Han, "The medicinal values of culinary-medicinal royal sun mushroom (Agaricus blazei Murrill)," Evidence-Based Complementary and Alternative Medicine, vol. 2013, 2013.
[3] F. Firenzuoli, L. Gori, and G. Lombardo, "The medicinal mushroom Agaricus blazei murrill: review of literature and pharmaco-toxicological problems," Evidence-Based Complementary and Alternative Medicine, vol. 5, no. 1, pp. 3-15, 2008.
[4] C. U. Lima, E. F. Gris, and M. G. Karnikowski, "Antimicrobial properties of the mushroom Agaricus blazei–integrative review," Revista Brasileira de Farmacognosia, vol. 26, no. 6, pp. 780-786, 2016.
[5] F.-H. Zhai, Q. Wang, and J.-R. Han, "Nutritional components and antioxidant properties of seven kinds of cereals fermented by the basidiomycete Agaricus blazei," Journal of Cereal Science, vol. 65, pp. 202-208, 2015.
[6] S.-M. Cho, K.-Y. Jang, H. J. Park, and J.-S. Park, "Analysis of the chemical constituents of Agaricus brasiliensis," Mycobiology, vol. 36, no. 1, pp. 50-54, 2008.
[7] P. K. Ouzouni, D. Petridis, W.-D. Koller, and K. A. Riganakos, "Nutritional value and metal content of wild edible mushrooms collected from West Macedonia and Epirus, Greece," Food Chemistry, vol. 115, no. 4, pp. 1575-1580, 2009.
[8] K. Wisitrassameewong et al., "Agaricus subrufescens: a review," Saudi Journal of Biological Sciences, vol. 19, no. 2, pp. 131-146, 2012.
[9] O. Taofiq et al., "Agaricus blazei Murrill from Brazil: an ingredient for nutraceutical and cosmeceutical applications," Food & function, vol. 10, no. 2, pp. 565-572, 2019.
[10] D. Lewis and D. Smith, "Sugar alcohols (polyols) in fungi and green plants. II. Methods of detection and quantitative estimation in plant extracts," The New Phytologist, vol. 66, no. 2, pp. 185-204, 1967.
[11] T. Mizuno and M. Kwai, "Chemistry and biochemistry of mushroom fungi," Gakai-shupan Center, Tokyo, 1992.
[12] S.-Y. Tsai, H.-L. Tsai, and J.-L. Mau, "Non-volatile taste components of Agaricus blazei, Agrocybe cylindracea and Boletus edulis," Food Chemistry, vol. 107, no. 3, pp. 977-983, 2008.
[13] V. Dıez and A. Alvarez, "Compositional and nutritional studies on two wild edible mushrooms from northwest Spain," Food chemistry, vol. 75, no. 4, pp. 417-422, 2001.
[14] R. Biedron, J. Tangen, K. Maresz, and G. Hetland, "Agaricus blazei Murill-immunomodulatory properties and health benefits," Functional Foods in Health and Disease, vol. 2, no. 11, pp. 428-447, 2012.
[15] K.-i. Oshiman, Y. Fujimiya, T. Ebina, I. Suzuki, and M. Noji, "Orally administered β-1, 6-D-polyglucose extracted from Agaricus blazei results in tumor regression in tumor-bearing mice," Planta medica, vol. 68, no. 07, pp. 610-614, 2002.
[16] P. R. Martins et al., "Polysaccharide-rich fraction of Agaricus brasiliensis enhances the candidacidal activity of murine macrophages," Memórias do Instituto Oswaldo Cruz, vol. 103, no. 3, pp. 244-250, 2008.
[17] V. E. c Ooi and F. Liu, "Immunomodulation and anti-cancer activity of polysaccharide-protein complexes," Current medicinal chemistry, vol. 7, no. 7, pp. 715-729, 2000.
[18] J. Zhang et al., "Antitumor polysaccharides from a Chinese mushroom,“yuhuangmo” the fruiting body of Pleurotus citrinopileatus," Bioscience, biotechnology, and biochemistry, vol. 58, no. 7, pp. 1195-1201, 1994.
[19] H. Kawagishi et al., "Fractionation and antitumor activity of the water-in-soluble residue of Agaricus blazei fruiting bodies," Carbohydrate Research, vol. 186, no. 2, pp. 267-273, 1989.
[20] W. Blaschek, J. Käsbauer, J. Kraus, and G. Franz, "Pythium aphanidermatum: culture, cell-wall composition, and isolation and structure of antitumour storage and solubilised cell-wall (1→ 3),(1→ 6)-β-d-glucans," Carbohydrate research, vol. 231, pp. 293-307, 1992.
[21] P. Mattila, A.-M. Lampi, R. Ronkainen, J. Toivo, and V. Piironen, "Sterol and vitamin D2 contents in some wild and cultivated mushrooms," Food Chemistry, vol. 76, no. 3, pp. 293-298, 2002.
[22] T. Takaku, Y. Kimura, and H. Okuda, "Isolation of an antitumor compound from Agaricus blazei Murill and its mechanism of action," The Journal of nutrition, vol. 131, no. 5, pp. 1409-1413, 2001.
[23] Z.-Y. Su, L. S. Hwang, Y.-H. Kuo, C.-H. Shu, and L.-Y. Sheen, "Black soybean promotes the formation of active components with antihepatoma activity in the fermentation product of Agaricus blazei," Journal of agricultural and food chemistry, vol. 56, no. 20, pp. 9447-9454, 2008.
[24] C.-H. Shu and K.-J. Lin, "Effects of aeration rate on the production of ergosterol and blazeispirol A by Agaricus blazei in batch cultures," Journal of the Taiwan Institute of Chemical Engineers, vol. 42, no. 2, pp. 212-216, 2011.
[25] S.-Y. Chen, K.-J. Ho, Y.-J. Hsieh, L.-T. Wang, and J.-L. Mau, "Contents of lovastatin, γ-aminobutyric acid and ergothioneine in mushroom fruiting bodies and mycelia," LWT, vol. 47, no. 2, pp. 274-278, 2012.
[26] A. Upadrasta and R. S. Madempudi, "Probiotics and blood pressure: current insights," Integrated blood pressure control, vol. 9, p. 33, 2016.
[27] A. Endo, "Monacolin K, a new hypocholesterolemic agent that specifically inhibits 3-hydroxy-3-methylglutaryl coenzyme A reductase," The journal of Antibiotics, vol. 33, no. 3, pp. 334-336, 1980.
[28] N. Ohno, M. Furukawa, N. N. Miura, Y. Adachi, M. Motoi, and T. Yadomae, "Antitumor β-glucan from the cultured fruit body of Agaricus blazei," Biological and Pharmaceutical Bulletin, vol. 24, no. 7, pp. 820-828, 2001.
[29] S. Bernardshaw, E. Johnson, and G. Hetland, "An extract of the mushroom Agaricus blazei Murill administered orally protects against systemic Streptococcus pneumoniae infection in mice," Scandinavian Journal of Immunology, vol. 62, no. 4, pp. 393-398, 2005.
[30] L. Chen and H. Shao, "Extract from Agaricus blazei Murill can enhance immune responses elicited by DNA vaccine against foot-and-mouth disease," Veterinary immunology and immunopathology, vol. 109, no. 1-2, pp. 177-182, 2006.
[31] F. Leroy and L. De Vuyst, "Lactic acid bacteria as functional starter cultures for the food fermentation industry," Trends in Food Science & Technology, vol. 15, no. 2, pp. 67-78, 2004.
[32] F. A. C. Martinez, E. M. Balciunas, J. M. Salgado, J. M. D. González, A. Converti, and R. P. de Souza Oliveira, "Lactic acid properties, applications and production: a review," Trends in food science & technology, vol. 30, no. 1, pp. 70-83, 2013.
[33] D. M. Linares et al., "Lactic acid bacteria and bifidobacteria with potential to design natural biofunctional health-promoting dairy foods," Frontiers in microbiology, vol. 8, p. 846, 2017.
[34] Y. Tanizawa et al., "Lactobacillus buchneri subsp. silagei subsp. nov., isolated from rice grain silage," International Journal of Systematic and Evolutionary Microbiology, vol. 70, no. 5, pp. 3111-3116, 2020.
[35] C. Wang, H. Han, X. Gu, Z. Yu, and N. Nishino, "A survey of fermentation products and bacterial communities in corn silage produced in a bunker silo in C hina," Animal Science Journal, vol. 85, no. 1, pp. 32-36, 2014.
[36] R. Muck, E. Nadeau, T. McAllister, F. Contreras-Govea, M. Santos, and L. Kung Jr, "Silage review: Recent advances and future uses of silage additives," Journal of dairy science, vol. 101, no. 5, pp. 3980-4000, 2018.
[37] D. Sawada, T. Kawai, K. Nishida, Y. Kuwano, S. Fujiwara, and K. Rokutan, "Daily intake of Lactobacillus gasseri CP2305 improves mental, physical, and sleep quality among Japanese medical students enrolled in a cadaver dissection course," Journal of Functional Foods, vol. 31, pp. 188-197, 2017.
[38] K. Nishida et al., "Daily administration of paraprobiotic Lactobacillus gasseri CP2305 ameliorates chronic stress-associated symptoms in Japanese medical students," Journal of Functional Foods, vol. 36, pp. 112-121, 2017.
[39] S. Akhondzadeh et al., "Comparison of Lavandula angustifolia Mill. tincture and imipramine in the treatment of mild to moderate depression: a double-blind, randomized trial," Progress in Neuro-Psychopharmacology and Biological Psychiatry, vol. 27, no. 1, pp. 123-127, 2003.
[40] H. İ. Öztürk, S. Aydın, and N. Akın, "Effect of Lavender Powder on Microbial, Physicochemical, Sensory and Functional Properties of Yoghurt," International Journal of Secondary Metabolite, vol. 4, no. 3, Special Issue 1, pp. 94-102, 2017.
[41] R. Dhakal, V. K. Bajpai, and K.-H. Baek, "Production of GABA (γ-aminobutyric acid) by microorganisms: a review," Brazilian Journal of Microbiology, vol. 43, no. 4, pp. 1230-1241, 2012.
[42] N. Tajabadi et al., "Optimization of γ-aminobutyric acid production by Lactobacillus plantarum Taj-Apis362 from honeybees," Molecules, vol. 20, no. 4, pp. 6654-6669, 2015.
[43] J.-H. Ye, L.-Y. Huang, N. S. Terefe, and M. A. Augustin, "Fermentation-based biotransformation of glucosinolates, phenolics and sugars in retorted broccoli puree by lactic acid bacteria," Food chemistry, vol. 286, pp. 616-623, 2019.
[44] H. Claus, "Extra cellular enzymes and peptides of lactic acid bacteria: Significance for vinification," Deutsche Lebensmittel-Rundschau, vol. 103, no. 11, pp. 505-511, 2007.
[45] S. Kosemura, S. Yamamura, and K. Hasegawa, "Chemical studies on 4-methylthio-3-butenyl isothiocyanate from roots of Japanese radish (Raphanus sativus L.) in connection with raphanusanins, phototropism-regulating substances of radish hypocotyls," Tetrahedron Letters, vol. 34, no. 3, pp. 481-484, 1993.
[46] S. O. Lee, G. W. Hong, and D. K. Oh, "Bioconversion of linoleic acid into conjugated linoleic acid by immobilized Lactobacillus reuteri," Biotechnology progress, vol. 19, no. 3, pp. 1081-1084, 2003.
[47] L. Gorissen et al., "Linoleate isomerase activity occurs in lactic acid bacteria strains and is affected by pH and temperature," Journal of Applied Microbiology, vol. 111, no. 3, pp. 593-606, 2011.
[48] A. Zhao, X. Hu, L. Pan, and X. Wang, "Isolation and characterization of a gamma-aminobutyric acid producing strain Lactobacillus buchneri WPZ001 that could efficiently utilize xylose and corncob hydrolysate," Applied microbiology and biotechnology, vol. 99, no. 7, pp. 3191-3200, 2015.
[49] C.-H. Shu and C.-J. Xu, "Medium optimization for producing bioactive exopolysaccharides by Agaricus brasiliensis S. Wasser et al.(= A. blazei Murrill ss. Heinem) in submerged culture," Food Technology and Biotechnology, vol. 45, no. 3, pp. 327-333, 2007.
[50] R. Forage, "Effect of environment on microbial activity," Comprehensive biotechnology, vol. 1, pp. 251-280, 1985.
[51] K.-J. Lin, "探討培養基之 pH 值與 Xanthan gum 的添加對巴西蘑菇多醣體生產之影響," National Central University, 2002.
[52] 劉峻彣, "靈芝液體培養及多醣生成之研究," 1996.
[53] H.-L. Chang, G.-R. Chao, C.-C. Chen, and J.-L. Mau, "Non-volatile taste components of Agaricus blazei, Antrodia camphorata and Cordyceps militaris mycelia," Food chemistry, vol. 74, no. 2, pp. 203-207, 2001.
[54] N. Komatsuzaki, J. Shima, S. Kawamoto, H. Momose, and T. Kimura, "Production of γ-aminobutyric acid (GABA) by Lactobacillus paracasei isolated from traditional fermented foods," Food microbiology, vol. 22, no. 6, pp. 497-504, 2005.
[55] Y. R. Cho, J. Y. Chang, and H. C. Chang, "Production of gamma-aminobutyric acid (GABA) by Lactobacillus buchneri isolated from kimchi and its neuroprotective effect on neuronal cells," Journal of Microbiology and Biotechnology, vol. 17, no. 1, pp. 104-109, 2007.
[56] D. Xu, W. Ding, W. Ke, F. Li, P. Zhang, and X. Guo, "Modulation of metabolome and bacterial community in whole crop corn silage by inoculating homofermentative Lactobacillus plantarum and heterofermentative Lactobacillus buchneri," Frontiers in microbiology, vol. 9, p. 3299, 2019.
[57] 劉庭萱, "探討利用 Lactobacillus plantarum發酵 Momordica charantia山苦瓜對其 降血糖及山苦瓜對其 降血糖及山苦瓜對其 降血糖及他生物活性之影響 他生物活性之影響 " 2020.
[58] J. Slavin, "Whole grains and human health," Nutrition research reviews, vol. 17, no. 1, pp. 99-110, 2004.
[59] D. A. Roth-Maier, S. I. Kettler, and M. Kirchgessner, "Availability of vitamin B 6 from different food sources," International journal of food sciences and nutrition, vol. 53, no. 2, pp. 171-179, 2002.
[60] T. T. T. Binh, W.-T. Ju, W.-J. Jung, and R.-D. Park, "Optimization of γ-amino butyric acid production in a newly isolated Lactobacillus brevis," Biotechnology letters, vol. 36, no. 1, pp. 93-98, 2014.
[61] M.-C. Kook, M.-J. Seo, C.-I. Cheigh, Y.-R. Pyun, S.-C. Cho, and H. Park, "Enhanced production of gamma-aminobutyric acid using rice bran extracts by Lactobacillus sakei B2-16," J Microbiol Biotechnol, vol. 20, no. 4, pp. 763-766, 2010.
[62] H. Li and Y. Cao, "Lactic acid bacterial cell factories for gamma-aminobutyric acid," Amino acids, vol. 39, no. 5, pp. 1107-1116, 2010.
[63] H. Li, T. Qiu, G. Huang, and Y. Cao, "Production of gamma-aminobutyric acid by Lactobacillus brevis NCL912 using fed-batch fermentation," Microbial Cell Factories, vol. 9, no. 1, pp. 1-7, 2010.
[64] J.-J. Yu and S.-H. Oh, "${gamma} $-Aminobutyric Acid Production and Glutamate Decarboxylase Activity of Lactobacillus sakei OPK2-59 Isolated from Kimchi," Korean Journal of Microbiology, vol. 47, no. 4, pp. 316-322, 2011.
[65] Q. Lin, "Submerged fermentation of Lactobacillus rhamnosus YS9 for γ-aminobutyric acid (GABA) production," Brazilian Journal of Microbiology, vol. 44, no. 1, pp. 183-187, 2013.
[66] H. D. Sa, J. Y. Park, S.-J. Jeong, K. W. Lee, and J. H. Kim, "Characterization of glutamate decarboxylase (GAD) from Lactobacillus sakei A156 isolated from jeot-gal," J Microbiol Biotechnol, vol. 25, no. 5, pp. 696-703, 2015.
[67] E.-J. Lee and S.-P. Lee, "Novel bioconversion of sodium glutamate to γ-amino butyric acid by co-culture of Lactobacillus plantarum K154 in Ceriporia lacerata culture broth," Food Science and Biotechnology, vol. 23, no. 6, pp. 1997-2005, 2014.
[68] J.-S. Lim, C. V. Garcia, and S.-P. Lee, "Optimized production of GABA and γ-PGA in a turmeric and roasted soybean mixture co-fermented by Bacillus subtilis and Lactobacillus plantarum," Food Science and Technology Research, vol. 22, no. 2, pp. 209-217, 2016.
[69] A. Santos-Espinosa et al., "Gamma-aminobutyric acid (GABA) production in milk fermented by specific wild lactic acid bacteria strains isolated from artisanal Mexican cheeses," Annals of Microbiology, vol. 70, no. 1, pp. 1-11, 2020.
[70] Y. Shan et al., "Evaluation of improved γ-aminobutyric acid production in yogurt using Lactobacillus plantarum NDC75017," Journal of dairy science, vol. 98, no. 4, pp. 2138-2149, 2015.
[71] E. Gachomo et al., "Germinating spores of Glomus intraradices can use internal and exogenous nitrogen sources for de novo biosynthesis of amino acids," New Phytologist, vol. 184, no. 2, pp. 399-411, 2009.
[72] E. Albers, C. Larsson, G. Lidén, C. Niklasson, and L. Gustafsson, "Influence of the nitrogen source on Saccharomyces cerevisiae anaerobic growth and product formation," Applied and environmental microbiology, vol. 62, no. 9, pp. 3187-3195, 1996.
指導教授 徐敬衡 審核日期 2020-8-5
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明