博碩士論文 107324020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:39 、訪客IP:3.138.123.137
姓名 王毓謙(Yu-Chien Wang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 碲化鉛熱電模組接點之材料研究
相關論文
★ 錫碲擴散偶之擴散阻障層界面反應★ 熱電材料與擴散阻障層在電流影響下的界面反應研究
★ 無鉛銲料與無電鍍鈷基板於多次迴焊之界面反應與可靠度測試★ 無電鍍鎳磷層應用於熱電材料與無鉛銲料之界面研究
★ 高可靠度車用印刷電路板之表面處理層開發★ 共濺鍍銅鈦薄膜之相分離演化機制與其對機械性質於3DIC接合的影響
★ 添加微量錫銀銅合金之銅薄膜與銅基板之接合研究★ 新式低溫合金焊料之開發與界面反應探討及可靠度分析
★ 電遷移對純錫導線晶粒旋轉之研究★ 以同步輻射臨場量測電遷移對純錫導線應力分佈之研究
★ 鋁鍺薄膜封裝研究★ 無鉛銲料錫銀鉍銦與銅電極之電遷移研究
★ 以表面處理及塗佈奈米粒子抑制錫晶鬚生長★ 鋁鍺雙層薄膜之擴散行為與金屬誘發結晶現象研究
★ 鋁(銅)與鎳混合導線於矽通孔製程之電遷移現象研究★ 無鉛銲料與碲化鉍基材之界面反應研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-31以後開放)
摘要(中) 由於人類對於能源的需求大增,以及石化燃料蘊藏量的有限性,開發並應用其他領域的替代性能源的重要性不言而喻。在再生能源領域中,能回收廢熱進行發電的熱電模組為近年來備受重視的開發項目。由碲化鉛熱電材料所構成的中溫熱電模組,在200-600度C的溫度範圍內具有相當優異的熱電表現。然而由於其元件應用溫度高,封裝熱電模組的所需條件對於模組來說更為嚴苛,常因劇烈的界面反應致使模組之熱電表現下降,甚至整體模組失效。本研究藉由應用無電鍍銀/鈷磷/鎳磷複合層作為擴散阻障
層鍍於碲化鉛基材表面,並選用商用之銀銅鋅錫高溫銲膏,將碲化鉛與銅基板和鎳基板以630度C,10 分鐘的條件進行硬銲接合,探討此無電鍍複合層對於界面反應的改善以及接點之推力強度的增加,並進一步以400度C、2 天之熱時效測試,評估此無電鍍複合層在中溫熱電模組工作溫度的可靠度。由實驗結果可知,碲化鉛直接與銅、鎳基板以銀銅鋅錫銲膏進行接合的接點,界面反應較為劇烈,於接點之截面皆觀察到連續裂縫生成,而經熱時效測試後,更由於基材的嚴重消耗導致接點強度極低。引入無電鍍銀/鈷磷/鎳磷複合層後,消弭了無鍍層之接點的劇烈界面反應,且對於推力強度的提升有所貢獻。經熱時效測試後,亦維持良好界面與推力強度,表現出此擴散阻障層之可靠度。因此可推論,在碲化鉛熱電接點中引入此無電鍍銀/鈷磷/鎳磷複合層,不僅能作為有效的擴散阻障層之外,同時提升了系統的機械性質,在熱時效測試後亦能有優良的表現。
摘要(英) Due to the highly increasing demand for energy and the limited reserves of fossil fuels, it is very important to develop alternative energies of other fields. In the field of renewable energy, the development of thermoelectric modules, which can transfer waste heat into electricity, has gained much attention in recent decades. Mid-temperature thermoelectric modules consisting of lead telluride (PbTe) thermoelectric alloys are known for the high thermoelectric performance in the temperature range of 200 to 600 oC. However, because the bonding temperature is higher than the working temperature, it leads to serious interfacial reactions in the joints, which affects the efficiency and even causes the failure of thermoelectric modules. In this study, electroless Ag/Co-P/Ni-P composite layer was applied to PbTe thermoelectric material as diffusion barrier layer, and commercial AgCuZnSn brazing paste was used to braze PbTe with Cu and Ni electrodes in the condition of 630 oC for 10 minutes. By investigating the improvement of severe interfacial reactions in joints and the increase of shear strength, the reliability of the composite layer could be assessed. Severe interfacial reactions occurred between PbTe bulk and brazing paste, which led to continuous crack at the interface; in further thermal aging test at 400 oC for 2 days, the serious consumption of PbTe bulk caused even harsher interfacial reactions and thus critically deteriorated the mechanical strength of joints. With the insertion of the composite layer, the drastic interfacial reaction was avoided, and the shear strength was also improved. Besides, the results of thermal aging test also presented good reliability in maintaining interfaces and shear strength. These results provided that the electroless Ag/Co-P/Ni-P composite layer in the joints of PbTe not only presented effective diffusion barrier layer ability but also enhanced the mechanical strength, even after thermal aging test.
關鍵字(中) ★ 碲化鉛
★ 熱電
★ 接點
★ 無電鍍
★ 擴散阻障層
★ 推力測試
關鍵字(英)
論文目次 摘要 I
Abstract II
致謝 III
目錄 V
圖目錄 VII
表目錄 X
第一章 緒論 1
1-1 再生能源 1
1-2 熱電材料 3
1-2-1 基礎原理 3
1-2-2 熱電裝置應用 5
1-3 碲化鉛熱電材料性質 7
1-4 碲化鉛界面接合反應 8
1-4-1 火花電漿燒結 (Spark plasma sintering, SPS) 9
1-4-2 擴散接合 (Diffusion bonding) 11
1-4-3 熱壓接合 (Hot pressing bonding) 13
1-4-4 硬銲 (Brazing) 14
1-5 無電鍍擴散阻障層 16
1-6 研究動機 18
1-7 實驗簡介 19
第二章 實驗方法 20
2-1 熱電材料製備 20
2-2 無電鍍沉積 20
2-2-1 無電鍍鈷磷 20
2-2-2 無電鍍鎳磷 22
2-2-3 無電鍍銀 22
2-3 硬銲接合 23
2-4 推力測試 24
2-5 試片分析 24
2-5-1 掃描式電子顯微鏡(Scanning Electron Microscope, SEM) 24
2-5-2 能量分散式光譜儀(Energy Dispersive Spectrometer, EDS) 25
2-5-3 X光繞射儀(X-ray Diffractometer, XRD) 25
2-5-4 場發式電子微探儀(Field Emission Electron Probe Microanalyzer, FE-EPMA) 26
第三章 結果與討論 27
3-1 硬銲接合 27
3-1-1 PbTe/ACZS/Cu與PbTe/ACZS/Ni接點 27
3-1-2 PbTe/Co-P/Ni-P/ACZS/Ni接點 30
3-1-3 PbTe/Ag/Co-P/Ni-P/ACZS/Cu與PbTe/Ag/Co-P/Ni-P/ACZS/Ni接點 32
3-2 熱時效測試 36
3-2-1 PbTe/ACZS/Cu與PbTe/ACZS/Ni接點經熱時效測試 37
3-2-2 PbTe/Ag/Co-P/Ni-P/ACZS/Cu與PbTe/Ag/Co-P/Ni-P/ACZS/Ni接點經熱時效測試 39
3-3 推力測試 41
3-3-1 PbTe/ACZS/Cu與PbTe/ACZS/Ni推力測試 41
3-3-2 PbTe/Ag/Co-P/Ni-P/ACZS/Cu與PbTe/Ag/Co-P/Ni-P/ACZS/Ni接點推力測試 45
第四章 結論 52
參考文獻…………………………………………………………………………..……..…………...54
參考文獻 [1] I. E. Agency. "Explore energy data by category, indicator, country or region," https://www.iea.org/data-and-statistics?country=WORLD&fuel=Energy%20supply&indicator=Electricity%20generation%20by%20source.
[2] B. S. R. o. W. Energy. "Years of fossil fuel reserves left," http://www.bp.com/content/dam/bp/pdf/energy-economics/statistical-review-2016/bp-statistical-review-of-world-energy-2016-full-report.pdf.
[3] C. Forman, I. K. Muritala, R. Pardemann, and B. Meyer, “Estimating the global waste heat potential,” Renewable and Sustainable Energy Reviews, vol. 57, pp. 1568-1579, 2016.
[4] S. B. Riffat, and X. Ma, “Thermoelectrics: a review of present and potential applications,” Applied Thermal Engineering, vol. 23, no. 8, pp. 913-935, 2003.
[5] X. F. Zheng, Y. Y. Yan, and K. Simpson, “A potential candidate for the sustainable and reliable domestic energy generation–Thermoelectric cogeneration system,” Applied Thermal Engineering, vol. 53, no. 2, pp. 305-311, 2013.
[6] Q. H. Zhang, X. Y. Huang, S. Q. Bai, X. Shi, C. Uher, and L. D. Chen, “Thermoelectric Devices for Power Generation: Recent Progress and Future Challenges ” Advanced Engineering Materials, vol. 18, no. 2, pp. 194-213, 2016.
[7] T. M. Tritt, “Thermoelectric materials: Principles, structure, properties, and applications,” 2002.
[8] G. J. Snyder, and E. S. Toberer, "Complex thermoelectric materials," materials for sustainable energy: a collection of peer-reviewed research and review articles from Nature Publishing Group, pp. 101-110: World Scientific, 2011.
[9] B. Sales, “Thermoelectric devices: refrigeration and power generations with no moving parts,” pp. 9179-9185, 2001.
[10] J. Li, B. Ma, R. Wang, and L. Han, “Study on a cooling system based on thermoelectric cooler for thermal management of high-power LEDs,” Microelectronics Reliability, vol. 51, no. 12, pp. 2210-2215, 2011.
[11] G. Min, and D. Rowe, “Experimental evaluation of prototype thermoelectric domestic-refrigerators,” Applied Energy, vol. 83, no. 2, pp. 133-152, 2006.
[12] J. Vián, D. Astrain, and M. Domınguez, “Numerical modelling and a design of a thermoelectric dehumidifier,” Applied Thermal Engineering, vol. 22, no. 4, pp. 407-422, 2002.
[13] J. Yang, and T. Caillat, “Thermoelectric materials for space and automotive power generation,” MRS bulletin, vol. 31, no. 3, pp. 224-229, 2006.
[14] K. Sasaki, D. Horikawa, and K. Goto, “Consideration of Thermoelectric Power Generation by Using Hot Spring Thermal Energy or Industrial Waste Heat,” Journal of Electronic Materials, vol. 44, no. 1, pp. 391-398, 2014.
[15] X. Liu, Y. D. Deng, Z. Li, and C. Q. Su, “Performance analysis of a waste heat recovery thermoelectric generation system for automotive application,” Energy Conversion and Management, vol. 90, pp. 121-127, 2015.
[16] J. Xiao, T. Yang, P. Li, P. Zhai, and Q. Zhang, “Thermal design and management for performance optimization of solar thermoelectric generator,” Applied Energy, vol. 93, pp. 33-38, 2012.
[17] R. Amatya, and R. Ram, “Solar thermoelectric generator for micropower applications,” Journal of electronic materials, vol. 39, no. 9, pp. 1735-1740, 2010.
[18] M. Hyland, H. Hunter, J. Liu, E. Veety, and D. Vashaee, “Wearable thermoelectric generators for human body heat harvesting,” Applied Energy, vol. 182, pp. 518-524, 2016.
[19] R. Abelson, "Thermoelectrics Handbook: Macro to Nano, CRC," Taylor & Francis, Boca Raton, FL, USA, 2006.
[20] R. Fritts, “Thermoelectric materials and devices,” N.-Y.: Reinhold Publ. Co, 1960.
[21] Y. Pei, A. LaLonde, S. Iwanaga, and G. J. Snyder, “High thermoelectric figure of merit in heavy hole dominated PbTe,” Energy & Environmental Science, vol. 4, no. 6, pp. 2085-2089, 2011.
[22] K. Narasimhan, “THERMO-ELECTRIC PROPERTIES OF BI 2 TE 3-PBTE ALLOYS,” INDIAN J PURE APPL PHYS 8 JULY 1967, K,--7--, 261-265, 1967.
[23] C. Champness, P. Chiang, K. Grabowski, and W. Muir, “Influence of growth conditions and tellurium phase on the thermoelectric properties of bismuth telluride‐type materials,” Journal of Applied Physics, vol. 39, no. 9, pp. 4177-4183, 1968.
[24] M. Dresselhaus, G. Chen, Z. Ren, G. Dresselhaus, A. Henry, and J.-P. Fleurial, “New composite thermoelectric materials for energy harvesting applications,” Jom, vol. 61, no. 4, pp. 86-90, 2009.
[25] J. R. Szczech, J. M. Higgins, and S. Jin, “Enhancement of the thermoelectric properties in nanoscale and nanostructured materials,” Journal of Materials Chemistry, vol. 21, no. 12, pp. 4037-4055, 2011.
[26] J. P. Heremans, V. Jovovic, E. S. Toberer, A. Saramat, K. Kurosaki, A. Charoenphakdee, S. Yamanaka, and G. J. Snyder, “Enhancement of thermoelectric efficiency in PbTe by distortion of the electronic density of states,” Science, vol. 321, no. 5888, pp. 554-557, 2008.
[27] W. Scanlon, "Polar semiconductors," Solid State Physics, pp. 83-137: Elsevier, 1959.
[28] A. D. LaLonde, Y. Pei, and G. J. Snyder, “Reevaluation of PbTe1−xIx as high performance n-type thermoelectric material,” Energy & Environmental Science, vol. 4, no. 6, 2011.
[29] K. Biswas, J. He, I. D. Blum, C.-I. Wu, T. P. Hogan, D. N. Seidman, V. P. Dravid, and M. G. Kanatzidis, “High-performance bulk thermoelectrics with all-scale hierarchical architectures,” Nature, vol. 489, no. 7416, pp. 414-418, 2012.
[30] B. Paul, P. Rawat, and P. Banerji, “Dramatic enhancement of thermoelectric power factor in PbTe: Cr co-doped with iodine,” Applied Physics Letters, vol. 98, no. 26, pp. 262101, 2011.
[31] Y. Pei, X. Shi, A. LaLonde, H. Wang, L. Chen, and G. J. Snyder, “Convergence of electronic bands for high performance bulk thermoelectrics,” Nature, vol. 473, no. 7345, pp. 66-69, 2011.
[32] A. D. LaLonde, Y. Pei, H. Wang, and G. J. Snyder, “Lead telluride alloy thermoelectrics,” Materials today, vol. 14, no. 11, pp. 526-532, 2011.
[33] C.-N. Liao, and C.-H. Lee, “Suppression of vigorous liquid Sn/Te reactions by Sn–Cu solder alloys,” Journal of Materials Research, vol. 23, no. 12, pp. 3303-3308, 2008.
[34] C.-H. Lee, W.-T. Chen, and C.-N. Liao, “Effect of antimony on vigorous interfacial reaction of Sn–Sb/Te couples,” Journal of alloys and compounds, vol. 509, no. 16, pp. 5142-5146, 2011.
[35] C.-n. Chiu, C.-h. Wang, and S.-w. Chen, “Interfacial reactions in the Sn-Bi/Te couples,” Journal of electronic materials, vol. 37, no. 1, pp. 40-44, 2008.
[36] 周雅文. "火花電漿燒結技術於熱電材料開發之應用," 287; https://www.materialsnet.com.tw/DocView.aspx?id=8987.
[37] T. Sui, J. F. Li, and S. Z. Jin, "Joining CoSb3 to Metal Surface of FGM Electrode for Thermoelectric Modules by SPS." pp. 1858-1861.
[38] J. Fan, L. Chen, S. Bai, and X. Shi, “Joining of Mo to CoSb3 by spark plasma sintering by inserting a Ti interlayer,” Materials Letters, vol. 58, no. 30, pp. 3876-3878, 2004.
[39] Z. Munir, U. Anselmi-Tamburini, and M. Ohyanagi, “The effect of electric field and pressure on the synthesis and consolidation of materials: A review of the spark plasma sintering method,” Journal of materials science, vol. 41, no. 3, pp. 763-777, 2006.
[40] X. R. Ferreres, S. A. Yamini, M. Nancarrow, and C. Zhang, “One-step bonding of Ni electrode to n-type PbTe—A step towards fabrication of thermoelectric generators,” Materials & Design, vol. 107, pp. 90-97, 2016.
[41] T.-H. Chuang, W.-T. Yeh, C.-H. Chuang, and J.-D. Hwang, “Improvement of bonding strength of a (Pb, Sn) Te–Cu contact manufactured in a low temperature SLID-bonding process,” Journal of alloys and compounds, vol. 613, pp. 46-54, 2014.
[42] T. Chuang, H. Lin, C. Chuang, W. Yeh, J. Hwang, and H. Chu, “Solid liquid interdiffusion bonding of (Pb, Sn) Te thermoelectric modules with Cu electrodes using a thin-film Sn interlayer,” Journal of electronic materials, vol. 43, no. 12, pp. 4610-4618, 2014.
[43] H. Xia, F. Drymiotis, C.-L. Chen, A. Wu, and G. J. Snyder, “Bonding and interfacial reaction between Ni foil and n-type PbTe thermoelectric materials for thermoelectric module applications,” Journal of materials science, vol. 49, no. 4, pp. 1716-1723, 2014.
[44] H. Xia, F. Drymiotis, C.-L. Chen, A. Wu, Y.-Y. Chen, and G. J. Snyder, “Bonding and high-temperature reliability of NiFeMo alloy/n-type PbTe joints for thermoelectric module applications,” Journal of materials science, vol. 50, no. 7, pp. 2700-2708, 2015.
[45] H. Xia, C.-L. Chen, F. Drymiotis, A. Wu, Y.-Y. Chen, and G. J. Snyder, “Interfacial reaction between Nb foil and n-type PbTe thermoelectric materials during thermoelectric contact fabrication,” Journal of electronic materials, vol. 43, no. 11, pp. 4064-4069, 2014.
[46] C. Li, F. Drymiotis, L. Liao, H. Hung, J. Ke, C. Liu, C. Kao, and G. J. Snyder, “Interfacial reactions between PbTe-based thermoelectric materials and Cu and Ag bonding materials,” Journal of Materials Chemistry C, vol. 3, no. 40, pp. 10590-10596, 2015.
[47] D. Ben-Ayoun, Y. Sadia, and Y. Gelbstein, “Compatibility between Co-Metallized PbTe Thermoelectric Legs and an Ag-Cu-In Brazing Alloy,” Materials (Basel), vol. 11, no. 1, Jan 10, 2018.
[48] S.-W. Chen, J.-C. Wang, and L.-C. Chen, “Interfacial reactions at the joints of PbTe thermoelectric modules using Ag-Ge braze,” Intermetallics, vol. 83, pp. 55-63, 2017.
[49] X. Hu, P. Jood, M. Ohta, M. Kunii, K. Nagase, H. Nishiate, M. G. Kanatzidis, and A. Yamamoto, “Power generation from nanostructured PbTe-based thermoelectrics: comprehensive development from materials to modules,” Energy & Environmental Science, vol. 9, no. 2, pp. 517-529, 2016.
[50] W.-C. Lin, Y.-S. Li, and A. T. Wu, “Study of diffusion barrier for solder/n-type Bi 2 Te 3 and bonding strength for p-and n-type thermoelectric modules,” Journal of Electronic Materials, vol. 47, no. 1, pp. 148-154, 2018.
[51] L.-C. Lo, and A. T. Wu, “Interfacial reactions between diffusion barriers and thermoelectric materials under current stressing,” Journal of electronic materials, vol. 41, no. 12, pp. 3325-3330, 2012.
[52] W. P. Lin, D. E. Wesolowski, and C. C. Lee, “Barrier/bonding layers on bismuth telluride (Bi 2 Te 3) for high temperature thermoelectric modules,” Journal of Materials Science: Materials in Electronics, vol. 22, no. 9, pp. 1313-1320, 2011.
[53] O. Iyore, T. Lee, R. Gupta, J. White, H. Alshareef, M. Kim, and B. Gnade, “Interface characterization of nickel contacts to bulk bismuth tellurium selenide,” Surface and Interface Analysis: An International Journal devoted to the development and application of techniques for the analysis of surfaces, interfaces and thin films, vol. 41, no. 5, pp. 440-444, 2009.
[54] R. Gupta, O. Iyore, K. Xiong, J. White, K. Cho, H. N. Alshareef, and B. Gnade, “Interface characterization of cobalt contacts on bismuth selenium telluride for thermoelectric devices,” Electrochemical and Solid-State Letters, vol. 12, no. 10, pp. H395-H397, 2009.
[55] C.-Y. Ko, and A. T. Wu, “Evaluation of diffusion barrier between pure Sn and Te,” Journal of electronic materials, vol. 41, no. 12, pp. 3320-3324, 2012.
[56] J.-S. Kang, Y.-S. Lee, and J.-H. Lee, “Effects of Bath Composition and P Contents on the Defects of NiP Layer in Electroless Nickel Immersion Gold Process,” Journal of nanoscience and nanotechnology, vol. 19, no. 7, pp. 4287-4291, 2019.
[57] G. Milad, and R. Mayes, “Electroless nickel/immersion gold finishes for application to surface mount technology: A regenerative approach,” Metal finishing, vol. 96, no. 1, pp. 42-46, 1998.
[58] P. Sahoo, and S. K. Das, “Tribology of electroless nickel coatings–a review,” Materials & Design, vol. 32, no. 4, pp. 1760-1775, 2011.
[59] N. M. Martyak, “Characterization of thin electroless nickel coatings,” Chemistry of materials, vol. 6, no. 10, pp. 1667-1674, 1994.
[60] M. Erming, L. Shoufu, and L. Pengxing, “A transmission electron microscopy study on the crystallization of amorphous Ni-P electroless deposited coatings,” Thin Solid Films, vol. 166, pp. 273-280, 1988.
[61] P. S. Kumar, and P. K. Nair, “Studies on crystallization of electroless Ni P deposits,” Journal of Materials Processing Technology, vol. 56, no. 1-4, pp. 511-520, 1996.
[62] H. Nakano, T. Itabashi, and H. Akahoshi, “Electroless deposited cobalt-tungsten-boron capping barrier metal on damascene copper interconnection,” Journal of The Electrochemical Society, vol. 152, no. 3, pp. C163-C166, 2005.
[63] S. Chang, C. Wan, Y. Wang, C. Shih, M. Tsai, S. Shue, C. Yu, and M. Liang, “Characterization of Pd-free electroless Co-based cap selectively deposited on Cu surface via borane-based reducing agent,” Thin Solid Films, vol. 515, no. 3, pp. 1107-1111, 2006.
[64] S. H. Bae, J. Y. Choi, and I. Son, "Effect of Electroless Ni-P Plating on the Bonding Strength of PbTe Thermoelectric Module Using Silver Alloy-Based Brazing." pp. 16-22.
[65] D. R. Lide, CRC handbook of chemistry and physics: CRC press, 2004.
[66] T. Lin, C. Liao, and A. T. Wu, “Evaluation of diffusion barrier between lead-free solder systems and thermoelectric materials,” Journal of electronic materials, vol. 41, no. 1, pp. 153-158, 2012.
[67] A. Vaskelis, A. Jagminiene, R. Juškénas, E. Matulionis, and E. Norkus, “Structure of electroless silver coatings obtained using cobalt (II) as reducing agent,” Surface and Coatings Technology, vol. 82, no. 1-2, pp. 165-168, 1996.
[68] E. Norkus, A. Vaškelis, A. Jagminienė, and L. Tamašauskaitė-Tamašiūnaitė, “Kinetics of electroless silver deposition using cobalt (II)-ammonia complex compounds as reducing agents,” Journal of applied electrochemistry, vol. 31, no. 9, pp. 1061-1066, 2001.
[69] H.-C. Hsieh, C.-H. Wang, T.-W. Lan, T.-H. Lee, Y.-Y. Chen, H.-S. Chu, and A. T. Wu, “Joint properties enhancement for PbTe thermoelectric materials by addition of diffusion barrier,” Materials Chemistry and Physics, pp. 122848, 2020.
[70] C. C. Li, F. Drymiotis, L. L. Liao, M. J. Dai, C. K. Liu, C. L. Chen, Y. Y. Chen, C. R. Kao, and G. J. Snyder, “Silver as a highly effective bonding layer for lead telluride thermoelectric modules assembled by rapid hot-pressing,” Energy Conversion and Management, vol. 98, pp. 134-137, 2015.
[71] J. E. Ni, E. D. Case, R. D. Schmidt, C.-I. Wu, T. P. Hogan, R. M. Trejo, M. J. Kirkham, E. Lara-Curzio, and M. G. Kanatzidis, “The thermal expansion coefficient as a key design parameter for thermoelectric materials and its relationship to processing-dependent bloating,” Journal of materials science, vol. 48, no. 18, pp. 6233-6244, 2013.
[72] Y. Hikage, S. Masutani, T. Sato, S. Yoneda, Y. Ohno, Y. Isoda, Y. Imai, and Y. Shinohara, "Thermal expansion properties of thermoelectric generating device component." pp. 331-335.
[73] Y. Pei, A. F. May, and G. J. Snyder, “Self‐Tuning the Carrier Concentration of PbTe/Ag2Te Composites with Excess Ag for High Thermoelectric Performance,” Advanced Energy Materials, vol. 1, no. 2, pp. 291-296, 2011.
[74] Y. Pei, J. Lensch‐Falk, E. S. Toberer, D. L. Medlin, and G. J. Snyder, “High thermoelectric performance in PbTe due to large nanoscale Ag2Te precipitates and La doping,” Advanced Functional Materials, vol. 21, no. 2, pp. 241-249, 2011.
[75] Y. Pei, N. A. Heinz, A. LaLonde, and G. J. Snyder, “Combination of large nanostructures and complex band structure for high performance thermoelectric lead telluride,” Energy & Environmental Science, vol. 4, no. 9, pp. 3640-3645, 2011.
指導教授 吳子嘉 審核日期 2020-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明