參考文獻 |
[1] 中華民國行政院經濟部能源局., 統計資料-發電結構. https://www.moeaboe.gov.tw/wesnq/Views/B01/wFrmB0102.aspx.
[2] IEA., World Energy Outlook 2019, 2019. https://www.iea.org/reports/world-energy-outlook-2019/electricity#abstract.
[3] X. Liu, Y.D. Deng, Z. Li, C.Q. Su, Performance analysis of a waste heat recovery thermoelectric generation system for automotive application, Energy Conversion and Management 90 (2015) 121-127.
[4] V.V. Khovaylo, T.A. Korolkov, A.I. Voronin, M.V. Gorshenkov, A.T. Burkov, Rapid preparation of InxCo4Sb12 with a record-breaking ZT = 1.5: the role of the In overfilling fraction limit and Sb overstoichiometry, Journal of Materials Chemistry A 5(7) (2017) 3541-3546.
[5] G.J. Snyder, E.S. Toberer, Complex thermoelectric materials, Nature Materials 7(2) (2008) 105-114.
[6] M. Rull-Bravo, A. Moure, J.F. Fernández, M. Martín-González, Skutterudites as thermoelectric materials: revisited, RSC Advances 5(52) (2015) 41653-41667.
[7] J.R. Sootsman, D.Y. Chung, M.G. Kanatzidis, New and old concepts in thermoelectric materials, Angew Chem Int Ed Engl 48(46) (2009) 8616-39.
[8] T. Caillat, J.P. Fleurial, A. Borshchevsky, Bridgman-solution crystal growth and characterization of the skutterudite compounds CoSb3 and RhSb3, Journal of Crystal Growth 166(1) (1996) 722-726.
[9] M.G. Holland, Phonon Scattering in Semiconductors From Thermal Conductivity Studies, Physical Review 134(2A) (1964) A471-A480.
[10] B. Fu, G. Tang, Y. Li, Electron-phonon scattering effect on the lattice thermal conductivity of silicon nanostructures, Phys Chem Chem Phys 19(42) (2017) 28517-28526.
[11] Y. Liu, X. Li, Q. Zhang, C. Chen, J. Li, L. Zhang, D. Yu, Y. Tian, B. Xu, High pressure synthesis of p-type Fe-substituted CoSb3 skutterudites, Journal of Materials Science: Materials in Electronics 27 (2016) 6433-6437.
[12] K.-H. Park, W.-S. Seo, D.-K. Shin, I.-H. Kim, Thermoelectric properties of Yb-filled CoSb3 skutterudites, Journal of the Korean Physical Society 65(4) (2014) 491-495.
[13] D. Zhao, X. Li, L. He, W. Jiang, L. Chen, Interfacial evolution behavior and reliability evaluation of CoSb3/Ti/Mo–Cu thermoelectric joints during accelerated thermal aging, Journal of Alloys and Compounds 477(1-2) (2009) 425-431.
[14] W.-a. Chen, S.-w. Chen, S.-m. Tseng, H.-w. Hsiao, Y.-y. Chen, G.J. Snyder, Y. Tang, Interfacial reactions in Ni/CoSb3 couples at 450 °C, Journal of Alloys and Compounds 632 (2015) 500-504.
[15] C.C. Yu, H.J. Wu, P.Y. Deng, M.T. Agne, G.J. Snyder, J.P. Chu, Thin-film metallic glass: an effective diffusion barrier for Se-doped AgSbTe2 thermoelectric modules, Sci Rep 7 (2017) 45177.
[16] P. Fan, Y. Zhang, Z.-h. Zheng, W.-f. Fan, J.-t. Luo, G.-x. Liang, D.-p. Zhang, Thermoelectric Properties of Cobalt Antimony Thin Films Deposited on Flexible Substrates by Radio Frequency Magnetron Sputtering, Journal of Electronic Materials 44(2) (2014) 630-635.
[17] A. Ahmed, S. Han, Thermoelectric properties of cobalt–antimonide thin films prepared by radio frequency co-sputtering, Thin Solid Films 587 (2015) 150-155.
[18] Z.-h. Zheng, P. Fan, Y. Zhang, J.-t. Luo, Y. Huang, G.-x. Liang, High-performance In filled CoSb3 nano thin films fabricated by multi-step co-sputtering method, Journal of Alloys and Compounds 639 (2015) 74-78.
[19] M.V. Daniel, M. Friedemann, J. Franke, M. Albrecht, Thermal stability of thermoelectric CoSb3 skutterudite thin films, Thin Solid Films 589 (2015) 203-208.
[20] M.V. Daniel, C. Brombacher, G. Beddies, N. Jöhrmann, M. Hietschold, D.C. Johnson, Z. Aabdin, N. Peranio, O. Eibl, M. Albrecht, Structural properties of thermoelectric CoSb3 skutterudite thin films prepared by molecular beam deposition, Journal of Alloys and Compounds 624 (2015) 216-225.
[21] S. Yadav, B.S. Yadav, S. Chaudhary, D.K. Pandya, Deposition potential controlled structural and thermoelectric behavior of electrodeposited CoSb3 thin films, RSC Advances 7(33) (2017) 20336-20344.
[22] K. Wasa, M. Kitabatake, H. Adachi, 2 - Thin Film Processes, in: K. Wasa, M. Kitabatake, H. Adachi (Eds.), Thin Film Materials Technology, William Andrew Publishing, Norwich, NY, 2004, pp. 17-69.
[23] A.O. Adeyeye, G. Shimon, Chapter 1 - Growth and Characterization of Magnetic Thin Film and Nanostructures, in: R.E. Camley, Z. Celinski, R.L. Stamps (Eds.), Handbook of Surface Science, North-Holland2015, pp. 1-41.
[24] H. Frey, Cathode Sputtering, in: H. Frey, H.R. Khan (Eds.), Handbook of Thin-Film Technology, Springer Berlin Heidelberg, Berlin, Heidelberg, 2015, pp. 133-165.
[25] M.T. Hardy, D.F. Storm, D.S. Katzer, B.P. Downey, N. Nepal, D.J. Meyer, Plasma-assisted Molecular Beam Epitaxy of N-polar InAlN-barrier High-electron-mobility Transistors, J Vis Exp (117) (2016).
[26] M.M. Bellah, S.M. Christensen, S.M. Iqbal, Nanostructures for Medical Diagnostics, Journal of Nanomaterials 2012 (2012) 1-21.
[27] K.H. Bae, S.-M. Choi, K.-H. Kim, Choi, S. Hyoung, W.-S. Seo, I.-H. Kim, S. Lee, H.J. Hwang, Power-Generation Characteristics After Vibration and Thermal Stresses of Thermoelectric Unicouples with CoSb3/Ti/Mo(Cu) Interfaces, Journal of Electronic Materials 44(6) (2015) 2124-2131.
[28] M. Shayesteh, C.L.M. Daunt, D. O′Connell, V. Djara, M. White, B. Long, R. Duffy, N-type doped germanium contact resistance extraction and evaluation for advanced devices, 2011 Proceedings of the European Solid-State Device Research Conference (ESSDERC), 2011, pp. 235-238.
[29] F. Giubileo, A. Di Bartolomeo, The role of contact resistance in graphene field-effect devices, Progress in Surface Science 92(3) (2017) 143-175.
[30] A. Ahmed, S. Han, Effect of Sb content on the thermoelectric properties of annealed CoSb 3 thin films deposited via RF co-sputtering, Applied Surface Science 408 (2017) 88-95.
[31] D. Zhao, C. Tian, Y. Liu, C. Zhan, L. Chen, High temperature sublimation behavior of antimony in CoSb3 thermoelectric material during thermal duration test, Journal of Alloys and Compounds 509(6) (2011) 3166-3171.
[32] R.A. Shkarban, Y.S. Peresunko, E.P. Pavlova, S.I. Sidorenko, A. Csik, Y.N. Makogon, Thermally Activated Processes of the Phase Composition and Structure Formation of the Nanoscaled Co–Sb Films, Powder Metallurgy and Metal Ceramics 54(11-12) (2016) 738-745.
[33] M. Project, CoSb3. https://materialsproject.org/materials/mp-1317/.
[34] M. Project, CoSb2. https://materialsproject.org/materials/mp-9835/.
[35] M. Project, CoSb. https://materialsproject.org/materials/mp-2644/.
[36] Y. Kawaharada, K. Kurosaki, M. Uno, S. Yamanaka, Thermoelectric properties of CoSb3, Journal of Alloys and Compounds 315(1) (2001) 193-197.
[37] M.V. Daniel, M. Lindorf, M. Albrecht, Thermoelectric properties of skutterudite CoSb3 thin films, Journal of Applied Physics 120(12) (2016).
[38] S. Katsuyama, F. Maezawa, T. Tanaka, Synthesis and thermoelectric properties of sintered skutterudite CoSb3with a bimodal distribution of crystal grains, Journal of Physics: Conference Series 379 (2012).
[39] N. Dong, X. Jia, T.C. Su, F.R. Yu, Y.J. Tian, Y.P. Jiang, L. Deng, H.A. Ma, HPHT synthesis and thermoelectric properties of CoSb3 and Fe0.6Co3.4Sb12 skutterudites, Journal of Alloys and Compounds 480(2) (2009) 882-884.
[40] Y. Liu, Y. Lin, Z. Shi, C.-W. Nan, Z. Shen, Preparation of Ca3Co4O9 and Improvement of its Thermoelectric Properties by Spark Plasma Sintering, Journal of the American Ceramic Society 88(5) (2005) 1337-1340.
[41] D. Zhao, X. Li, L. He, W. Jiang, L. Chen, High temperature reliability evaluation of CoSb3/electrode thermoelectric joints, Intermetallics 17(3) (2009) 136-141.
[42] K.T. Wojciechowski, R. Zybala, R. Mania, High temperature CoSb3–Cu junctions, Microelectronics Reliability 51(7) (2011) 1198-1202.
[43] R.P. Gupta, K. Xiong, J.B. White, K. Cho, H.N. Alshareef, B.E. Gnade, Low Resistance Ohmic Contacts to Bi[sub 2]Te[sub 3] Using Ni and Co Metallization, Journal of The Electrochemical Society 157(6) (2010). |