參考文獻 |
References
[1] Finder, Verena H. "Alzheimer′s disease: a general introduction and pathomechanism." Journal of Alzheimer′s Disease 22 (2010): 5-19.
[2] Goedert M, Spillantini MG, Jakes R, Rutherford D, Crowther RA "Multiple isoforms of human microtubule associated protein tau: sequences and localization in neurofibrillary tangles of Alzheimer’s disease." Neuron 3 (1989): 519-526.
[3] Jang, Hyunbum, et al. "Mechanisms for the insertion of toxic, fibril-like β-amyloid oligomers into the membrane." Journal of Chemical Theory and Computation 9 (2013): 822-833.
[4] Khondker, Adree, Richard J. Alsop, and Maikel C. Rheinstädter. "Membrane-accelerated amyloid-β aggregation and formation of cross-β sheets." Membranes 7 (2017): 49-68.
[5] Spillantini MG, Bird TD, Ghetti B "Frontotemporaldementia and Parkinsonism linked to chromosome 17: A new group of tauopathies." Brain Pathol 8 (1998): 387-402.
[6] Tjernberg, Lars O., et al. "A molecular model of Alzheimer amyloid β-peptide fibril formation." Journal of Biological Chemistry 274 (1999): 619-625.
[7] Tjernberg, Lars O., et al. "Controlling amyloid β-peptide fibril formation with protease-stable ligands." Journal of Biological Chemistry 272 (1997): 601-605.
[8] Selkoe, Dennis J. "Resolving controversies on the path to Alzheimer′s therapeutics." Nature Medicine 17 (2011): 60-65.
[9] Holmes, Clive, et al. "Long-term effects of Aβ42 immunisation in Alzheimer′s disease: follow-up of a randomised, placebo-controlled phase I trial." The Lancet 372 (2008): 216-223.
[10] LaFerla, Frank M., Kim N. Green, and Salvatore Oddo. "Intracellular amyloid-β in Alzheimer′s disease." Nature Reviews Neuroscience 8 (2007): 499-509.
[11] Kayed, Rakez, et al. "Permeabilization of lipid bilayers is a common conformation-dependent activity of soluble amyloid oligomers in protein misfolding diseases." Journal of Biological Chemistry 279 (2004): 363-366.
[12] Virchow, Rud. "Ueber eine im Gehirn und Rückenmark des Menschen aufgefundene Substanz mit der chemischen Reaction der Cellulose." Archiv für pathologische Anatomie und Physiologie und für klinische Medicin 6 (1854): 135-138.
[13] Cárdenas-Aguayo, M. del C., et al. "Physiological role of amyloid beta in neural cells: the cellular trophic activity." Neurochemistry (2014): 257-281.
[14] Wong, Pamela T., et al. "Amyloid-β membrane binding and permeabilization are distinct processes influenced separately by membrane charge and fluidity." Journal of Molecular Biology 386 (2009): 81-96.
[15] Butterfield, Sara M., and Hilal A. Lashuel. "Amyloidogenic protein–membrane interactions: mechanistic insight from model systems." Angewandte Chemie International Edition 49 (2010): 5628-5654.
[16] Quist, Arjan, et al. "Amyloid ion channels: a common structural link for protein-misfolding disease." Proceedings of the National Academy of Sciences 102 (2005): 427-432.
[17] Kagan, B. L., R. Azimov, and R. Azimova. "Amyloid peptide channels." The Journal of membrane biology (2004): 1-10.
[18] Sciacca, Michele FM, et al. "Two-step mechanism of membrane disruption by Aβ through membrane fragmentation and pore formation." Biophysical Journal 103 (2012): 702-710.
[19] Lashuel, Hilal A., and Peter T. Lansbury. "Are amyloid diseases caused by protein aggregates that mimic bacterial pore-forming toxins?." Quarterly Reviews of Biophysics 39 (2006): 167-201
[20] Hirakura, Yutaka, Meng‐Chin Lin, and Bruce L. Kagan. "Alzheimer amyloid Aβ1–42 channels: effects of solvent, pH, and Congo Red." Journal of Neuroscience Research 57 (1999): 458-466.
[21] Sezgin, Erdinc, et al. "The mystery of membrane organization: composition, regulation and roles of lipid rafts." Nature reviews Molecular Cell Biology 18 (2017): 361-375.
[22] Belhocine, Tarik Z., and Frank S. Prato. "Transbilayer phospholipids molecular imaging." EJNMMI Research 1 (2011): 17.
[23] Jelinek, Raz, and Sofiya Kolusheva. "Membrane interactions of host-defense peptides studied in model systems." Current Protein and Peptide Science 6 (2005): 103-114.
[22] Jiang, Guangyao, et al. "The plasticity of brain gray matter and white matter following lower limb amputation." Neural Plasticity (2015).
[24] Söderberg, M., et al. "Fatty acid composition of brain phospholipids in aging and in Alzheimer’s disease." Lipids (1991): 421.
[25] Dhollander, Thijs. "Accounting for Complex Structure in Diffusion Weighted Imaging Data using Volume Fraction Representations." (2014).
[26] Thompson, Paul M., et al. "Dynamics of gray matter loss in Alzheimer′s disease." Journal of Neuroscience 23 (2003): 994-1005.
[27] Rombouts, Serge ARB, et al. "Unbiased whole-brain analysis of gray matter loss in Alzheimer′s disease." Neuroscience Letters 285 (2000): 231-233.
[28] Nasrabady, Sara E., et al. "White matter changes in Alzheimer’s disease: a focus on myelin and oligodendrocytes." Acta Neuropathologica Communications 6 (2018): 22-32.
[29] Rose, Stephen E., et al. Journal of Neurology, Neurosurgery & Psychiatry 69 (2000): 528-530.
[30] Di Scala, Coralie, et al. "Common molecular mechanism of amyloid pore formation by Alzheimer’s β-amyloid peptide and α-synuclein." Scientific Reports 6 (2016)
[31] Chen, Fang-Yu, Ming-Tao Lee, and Huey W. Huang. "Evidence for membrane thinning effect as the mechanism for peptide-induced pore formation." Biophysical Journal 84 (2003): 3751-3758. |