博碩士論文 107223039 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:81 、訪客IP:3.146.65.212
姓名 林運旺(Yun-Wang Lin)  查詢紙本館藏   畢業系所 化學學系
論文名稱 從葡萄糖胺及抗壞血酸合理設計合成細菌特有單醣:偽胺基酸
(Rational Design and Synthesis of Bacterial Specific Monosaccharide: Pseudaminic Acid from D-Glucosamine and L-Ascorbic Acid)
相關論文
★ 從手性N-亞磺醯胺進行非對映選擇性磷酯基化反應建構高度選擇性的α-胺基磷酸酯★ 二價銅促進1,2,3-三嗪與二級胺之親核性加成氧化反應
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-21以後開放)
摘要(中) Pseudaminic acid是一種唾液酸的衍生物,也是許多革蘭氏陰性菌細胞表面的醣聚合物的成分之一。不同革蘭氏陰性菌的細胞表面,有些含有pseudaminic acid,有些則是含有pseudaminic acid的衍生物,而衍生物就是原本pseudaminic acid的架構在碳五或碳七的胺基上做不同的官能基改變。許多研究指出pseudaminic acid與細菌是否能感染宿主細胞因而致病有關,而常見的革蘭氏陰性菌例如:大腸桿菌、弧菌、綠膿桿菌…等。這些革蘭氏陰性菌都具有致病性,並且對人體有害,而大多數的抗生素都不能有效抑制此類細菌,所以對於pseudaminic acid在感染宿主機制上所扮演的角色的研究是非常重要的,但由於目前無法藉由培養細菌大量純化取得pseudaminic acid,因此如何以人工合成pseudaminic acid便顯得十分重要,有鑑於現行發表的數種合成方法有著低總產率及步驟繁複等缺點。在本論文中,我們設計了新的合成路徑,除了能使用較便宜的D-glucosamine和L-ascorbic acid (俗稱維他命C)作為起始物,還能在較少合成的步驟中能將pseudaminic acid的碳五與碳七位置上的疊氮選擇以不同官能基去修飾,形成不同胺的官能基,這對於在pseudaminic acid及相關衍生物的合成是尤為重要的。
摘要(英) The nonulosonic acid class of sugars consists of 9-carbon α-keto acid carbohydrate monomers. Unique to bacterial species are the recently identified sialic acid derivatives, which are an important sub-class of nonulosonic acids. Pseudaminic acid and legionaminic acid occur as several derivatives with changes in the nature of the amide groups attached to C-5 and C-7. Pseudaminic acid with the L-glycero-L-manno configuration differs from sialic acid in configuration at both the C-5 and C-7 positions in addition to the deoxygenation at C-9 and the N for O substitution at C-7. Pseudaminic acid is found coating the surface of various bacterial human pathogens. Protein glycosylation is an essential post-translational modification in bacteria that has emerged as a new entry to study bacterial pathogenesis and develop novel therapeutic intervention. In particular, Pseudaminylation of proteins has been the subject of significant interest owing to their importance in Gram-negative bacterial pathogens. To date, several synthetic routes have been reported to synthesize pseudaminic acid and its derivatives. All these efforts resulted in poor overall yield and low stereo- and regioselectivity through a number of steps total synthesis. Herein we present two facile de novo synthetic routes toward pseudaminic acid and its functionalized derivatives from easily available D-glucosamine and L-ascorbic acid (vitamin C), respectively. The key reactions in our de novo synthesis involve the diastereoselective azide-based SN2 reaction to create the 2,4-anti-diamino skeleton, followed by the reduction and aldol-type allylation.
關鍵字(中) ★ 革蘭氏陰性菌
★ 醣聚合物
關鍵字(英) ★ Pseudaminic acid
★ nonulosonic acid
論文目次 摘要 i
Abstract ii
誌謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
縮寫表 x
第一章、緒論 1
1-1前言 1
1-2革蘭氏陰性菌 2
1-3對抗革蘭氏陰性菌之抗生素 4
1-4對抗革蘭氏陰性菌之新興療法-醣複合式疫苗 5
1-5 nonulosonic acid 6
1-6 legionaminic acid的高效率合成途徑 9
1-7合成pseudaminic acid的五種不同化學合成途徑 10
1-8研究動機 17
第二章、實驗結果與討論 18
2-1以D-glucosamine hydrochloride作為起始物合成pseudaminic acid的合成路徑 18
2-2以D-glucosamine hydrochloride作為起始物合成pseudaminic acid 的合成詳細步驟 19
2-3以D-glucosamine hydrochloride作為起始物合成pseudaminic acid的實驗步驟與討論 20
2-4以L-ascorbic acid合成pseudaminic acid的合成路徑 24
2-5 以L-ascorbic acid合成pseudaminic acid的詳細步驟 25
2-6以L-ascorbic acid合成pseudaminic acid的實驗步驟與討論 26
第三章、結論 36
第四章、實驗部分 39
4-1實驗儀器 39
4-2合成步驟與光譜資料 40
參考文獻 56
附錄 60
參考文獻 [1] Tra, V. N.; Dube, D. H. “Glycans in pathogenic bacteria – potential for targeted covalent therapeutics and imaging agents” Chem. Commun. 2014, 50, 4659–4673.
[2] Steward, K. “Gram positive vs Gram negative” 2019年8月21日。取自: https://www.technologynetworks.com/immunology/articles/gram-positive-vs-gram-negative-323007。
[3] 王永志,郭書辰,「對抗格蘭氏陰性菌之抗生素新藥簡介」,感染控制雜誌,第28卷第2期,88-96頁,107年4月。
[4] 朱麗鈴,陳麗芳,「多重抗藥性鮑氏不動桿菌之藥物治療策略」,藥學雜誌,第28卷第2期,40-45頁,98年6月。
[5] 吳杰亮等編著,台灣肺炎診治指引,台灣感染症醫學會,台灣胸腔暨重症加護醫學會,財團法人鄭德齡醫學發展基金會,107年10月。
[6] 王修含:抗生素藥理學機轉簡介。99年。取自:
http://www.skin168.net/2013/12/antibiotics.html
[7] Mansy, W.; Muzaheed; Rathod, S. “Temporal association between antibiotic use and resistance in Gram-negative bacteria” Arch. Pharma. Pract. 2020, 11, 13‒18.
[8] 陳偉智,謝永宏,「藉由 Cephalosporins 結構瞭解其各代在臨床使用上的抗菌範圍」,藥學雜誌,第28卷第1期,25‒31頁,101年3月。
[9] Zhanel G. G.; Ennis K.; Vercaigne L.; Walkty A.; Gin A. S.; Embil J.; Smith H.; Hoban D. J. “A critical review of the fluoro-quinolones” Drugs 2002, 62, 13–59.
[10] Lee, I.-M.; Yang, F.-L.; Chen, T.-L.; Liao, K.-S.; Ren, C.-T.; Lin, N.-T.; Chang, Y.-P.; Wu, C.-Y.; Wu, S.-H. “Pseudaminic acid on exopolysaccharide of acinetobacter baumannii plays a critical role in phage-assisted preparation of glycoconjugate vaccine with high antigenicity” J. Am. Chem. Soc. 2018, 140, 8639−8643.
[11] Pradhan, K.; Kulkarni, S. S. “Synthesis of nonulosonic acids” Eur. J. Org. Chem. 2020, DOI: 10.1002/ejoc.202000250.
[12] Chen, X.; Varki, A. “Advances in the biology and chemistry of sialic acids” ACS Chem. Biol. 2010, 5, 163–176.
[13] Knirel, Y. A. “Polysaccharide antigens of Pseudomonas Aeruginosa” Crit. Rev. Microbiol. 1990, 17, 273‒304.
[14] Kenyon, J. J.; Marzaioli, A. M.; Castro, C. D.; Hall, R. M. “5,7-di-N-acetyl-acinetaminic acid: A novel non-2-ulosonic acid found in the capsule of an Acinetobacter baumannii isolate” Glycobiology 2015, 25, 644–654.
[15] Wei, R.; Liu, H.; Li, X. “De novo synthesis of novel bacterial monosaccharide fusaminic acid” J. Antibiot. 2019, 72, 420–431.
[16] Zunk, M.; Kiefel, M. J. “The occurrence and biological significance of the α-keto-sugars pseudaminic acid and legionaminic acid within pathogenic bacteria” RSC Adv. 2014, 4, 3413–3421.
[17] Santra, A.; Xiao, A.; Yu, H.; Li, W.; Li, Y.; Ngo, L.; McArthur, J. B.; Chen, X. “A diazido mannose analogue as a chemoenzymatic synthon for synthesizing di-N-acetyllegionaminic acid-containing glycosides” Angew. Chem. Int. Ed. 2018, 130, 2979–2983.
[18] Tsvetkov, Y. E.; Shashkov, A. S.; Knirel, Y. A.; Zähringer, U. “Synthesis and NMR spectroscopy of nine stereoisomeric 5,7-diacetamido-3,5,7,9-tetradeoxynon-2-ulosonic acids” Carbohydrate Res. 2001, 335, 221–243.
[19] Lee, Y. J.; Kubota, A.; Ishiwata, A.; Ito, Y. “Synthesis of pseudaminic acid, a unique nonulopyranoside derived from pathogenic bacteria through 6-deoxy-AltdiNAc” Tetrahedron Lett. 2011, 52, 418–421.
[20] Williams, J. T.; Corcilius, L.; Kiefel, M. J.; Payne, R. J. “Total synthesis of native 5,7-diacetylpseudaminic acid from N‑acetylneuraminic acid” J. Org. Chem. 2016, 81, 2607−2611.
[21] Liu, H.; Zhang, Y.; Wei, R.; Andolina, G.; Li, X. “Total synthesis of Pseudomonas aeruginosa 1244 pilin glycan via de novo synthesis of pseudaminic acid” J. Am. Chem. Soc. 2017, 139, 13420−13428.
[22] Dhakal, B.; Crich, D. “Synthesis and stereocontrolled equatorially selective glycosylation reactions of a pseudaminic acid donor: Importance of the side chain conformation and regioselective reduction of azide protecting groups” J. Am. Chem. Soc. 2018, 140, 15008−15015.
[23] Pfistera, H. B.; Paolettia, J.; Povedad, A.; Jimenez-Barberod, J.; Mulard, L. A. “Zwitterionic polysaccharides of shigella sonnei: Synthetic study toward a ready-for-oligomerization building block made of two rare amino sugars” Synthesis 2018, 50, 4270−4282.
[24] Nagorny, P.; Fasching, B.; Li, X.; Chen, G.; Aussedat, B.; Danishefsky, S. J. “Toward fully synthetic homogeneous β-human ollicle-stimulating hormone (β-hFSH) with a biantennary N-linked dodecasaccharide. synthesis of β-hFSH with chitobiose units at the natural linkage sites” J. Am. Chem. Soc. 2009, 131, 5792–5799.
[25] Minuth, T.; Irmak, M.; Groschner, A.; Lehnert, T.; Boysen, M. M. K. “Sweets for catalysis -facile optimisation of carbohydrate-based bis(oxazoline) ligands” Eur. J. Org. Chem. 2009, 997–1008.
[26] Chida, N.; Sugihara, K.; Amano, S.; Ogawa, S. “Chiral and stereoselective total synthesis of (‒)-mesembranol starting from D-glucose” J. Chem. Soc., Perkin Trans. 1 1997, 275‒280.
[27] Jenkins, D. J.; Dubreuil, D.; Potter, B. V. L. “Synthesis of D-2-deoxy-myo-inositol 1,3,4,5-tetrakisphosphate from D-glucose” J. Chem. Soc., Perkin Trans. 1 1996, 1365‒1372.
[28] Nash, R. J.; Fleet, G. W. J.; Van Ameijde, J.; Horne, G. “Synthesis of polyhydroxylated alkaloids” PCT Int. Appl. Publication date 26 Jan 2006, publication no WO 2006/008493 A1
[29] Crawford, T. C. “Ascorbic acid synthesis” United States Patent, Patent No. 4111958,
[30] Chen, X.; Xu, P.; Xu, Y.; Liu, L.; Liu, Y.; Zhu, D.; Lei, P. “Synthesis and antibacterial activity of novel modified 5-O-desosamine ketolides” Bioorg. Med. Chem. Lett. 2012, 22, 7402–7405.
[31] Zunk, M.; Kiefel, M. J. “An efficient synthesis of selectively functionalized D-rhamnose derivatives” Tetrahedron Lett. 2011, 52, 1296–1299.
[32] Masuda, Y.; Tsuda, H.; Murakami, M. “C1 oxidation/C2 reduction isomerization of unprotected aldoses induced by light/ketone” Angew. Chem. Int. Ed. 2020, 59, 2755–2759.
[33] Kasahara, K.; Iida, H.; Kibayashi, C. “Asymmetric total synthesis of (+)-negamycin and (‒)-3-epinegamycin via enantioselective 1,3-dipolar cycloaddition” J. Org. Chem. 1989, 54, 2225–2233.
[34] Michigami, K.; Terauchi, M.; Hayashi, M. “Cleavage of 4,6-O-benzylidene acetal using sodium hydrogen sulfate monohydrate” Synthesis 2013, 45,1519–1523.
指導教授 謝俊結 侯敦仁 審核日期 2020-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明