參考文獻 |
1. Ellabban O, Abu-Rub H, Blaabjerg F. Renewable energy resources: Current
status, future prospects and their enabling technology. Renewable and
Sustainable Energy Reviews. 2014;39:748-64.
2. Khare A. A critical review on the efficiency improvement of upconversion
assisted solar cells. Journal of Alloys and Compounds. 2020;821.
3. Bernadette K. McCabe TS. Integrated biogas systems : Local applications of
anaerobic digestion towards integrated sustainable solutions IEA Bioenergy;
2018.
4. 范 振 誠 、 陳 明 君 . 循環經濟當道 生 質 塑 膠 潛 力 大
https://csrone.com/news/5409
5. Jiang C, Moniz SJA, Wang A, Zhang T, Tang J. Photoelectrochemical devices
for solar water splitting - materials and challenges. Chemical Society Reviews
2017;46(15):4645-60.
6. Müllejans H, Ioannides A, Kenny R, Zaaiman W, Ossenbrink HA, Dunlop
ED. Spectral mismatch in calibration of photovoltaic reference devices by
global sunlight method. Measurement Science and Technology.
2005;16(6):1250-4.
7. 郭瑋汝. 光陽極在可見光下進行醇類選擇性氧化的應用. 中央大學 2018.
8. 黃英婷、汪進忠. 2015: 工業材料雜誌.
9. Cha HG, Choi KS. Combined biomass valorization and hydrogen production
in a photoelectrochemical cell. Nature Chemistry 2015;7(4):328-33.
10. Boratto MH. Semiconducting and Insulating oxides applied to electronic
device 2018.
11. Rajeshwar K. Encyclopedia of Electrochemistry. 2007.
12. Honda A FK. Electrochemical Photolysis of Water at a Semiconductor
Electrode. Nature. 1972;238.
13. Xiaoli C. Flat Band Potential of Semiconductor Electrodes. 化學通報.
2017;80.12.
78
14. Xu XT, Pan L, Zhang X, Wang L, Zou JJ. Rational Design and Construction
of Cocatalysts for Semiconductor-Based Photo-Electrochemical Oxygen
Evolution: A Comprehensive Review. Advanced Science
2019;6(2):1801505.
15. Wang G, Ling Y, Wang H, Xihong L, Li Y. Chemically modified
nanostructures for photoelectrochemical water splitting. Journal of
Photochemistry and Photobiology C: Photochemistry Reviews. 2014;19:35-
51.
16. Zhebo Chen HND, Eric Miller Photoelectrochemical Water Splitting
Standards, Experimental Methods, and Protocols: springer; 2013.
17. Kudo A, Ueda K, Kato H, Mikami I. Photocatalytic O2 evolution under visible
light irradiation on BiVO4 in aqueous AgNO3 solution. Catalysis Letters.
1998;53(3):229-30.
18. A M, J M, Ashokkumar M, Arunachalam P. A review on BiVO4 photocatalyst:
Activity enhancement methods for solar photocatalytic applications. Applied
Catalysis A: General. 2018;555:47-74.
19. Bhat SSM, Jang HW. Recent Advances in Bismuth-Based Nanomaterials for
Photoelectrochemical Water Splitting. ChemSusChem. 2017;10(15):3001-18.
20. He Ra, Cao S, Zhou P, Yu J. Recent advances in visible light Bi-based
photocatalysts. Chinese Journal of Catalysis. 2014;35(7):989-1007.
21. Hu Y, Fan J, Pu C, Li H, Liu E, Hu X. Facile synthesis of double cone-shaped
Ag4V2O7/BiVO4 nanocomposites with enhanced visible light photocatalytic
activity for environmental purification. Journal of Photochemistry and
Photobiology A: Chemistry. 2017;337:172-83.
22. Kim JH, Lee JS. Elaborately Modified BiVO4 Photoanodes for Solar Water
Splitting. Advanced Materials 2019;31(20):e1806938.
23. Kronawitter CX, Vayssieres L, Shen S, Guo L, Wheeler DA, Zhang JZ. A
perspective on solar-driven water splitting with all-oxide heteronanostructures. Energy & Environmental Science. 2011;4(10).
24. Walter MGW, E.L.; McKone, J.R.; Boettcher, S.W.; Mi, Q.; Santori, E.A.;
Lewis, N.S. Solar Water Splitting Cells. Chemical Reviews 2010;110:
6446–73.
25. Abdi FF, Firet N, van de Krol R. Efficient BiVO4 Thin Film Photoanodes
Modified with Cobalt Phosphate Catalyst and W-doping. ChemCatChem.
2013;5(2):490-6.
26. Sinclair TS, Hunter BM, Winkler JR, Gray HB, Müller AM. Factors affecting
bismuth vanadate photoelectrochemical performance. Materials Horizons.
2015;2(3):330-7.
79
27. Zhou M, Bao J, Xu Y, Zhang J, Xie J, Guan M, et al. Photoelectrodes Based
upon Mo:BiVO4 Inverse Opals for Photoelectrochemical Water Splitting.
ACS Nano. 2014;8(7):7088-98.
28. Abdi FF, Savenije TJ, May MM, Dam B, van de Krol R. The Origin of Slow
Carrier Transport in BiVO4 Thin Film Photoanodes: A Time-Resolved
Microwave Conductivity Study. The Journal of Physical Chemistry Letters.
2013;4(16):2752-7.
29. Gan J, Lu X, Tong Y. Towards highly efficient photoanodes: boosting
sunlight-driven semiconductor nanomaterials for water oxidation. Nanoscale.
2014;6(13):7142-64.
30. Toma FM, Cooper JK, Kunzelmann V, McDowell MT, Yu J, Larson
DM,Borys NJ, Abelyan C,Beeman JW, Yu KM, Yang J, Chen L, Shaner MR,
spurgeon J, Houle FA, Persson KA, Sharp LD
Mechanistic insights into chemical and photochemical transformations of
bismuth vanadate photoanodes. Nature Communications. 2016;7:12012.
31. McDonald KJ, Choi K-S. A new electrochemical synthesis route for a BiOI
electrode and its conversion to a highly efficient porous BiVO4 photoanode
for solar water oxidation. Energy & Environmental Science. 2012;5(9).
32. Kim TW, Choi K-S. Nanoporous BiVO4 Photoanodes with Dual-Layer
Oxygen Evolution Catalysts for Solar Water Splitting. Science.
2014;343(6174):990.
33. Hernández S, Gerardi G, Bejtka K, Fina A, Russo N. Evaluation of the charge
transfer kinetics of spin-coated BiVO4 thin films for sun-driven water
photoelectrolysis. Applied Catalysis B: Environmental. 2016;190:66-74.
34. Pattengale B, Ludwig J, Huang J. Atomic Insight into the W-Doping Effect
on Carrier Dynamics and Photoelectrochemical Properties of BiVO4
Photoanodes. The Journal of Physical Chemistry C. 2016;120(3):1421-7.
35. Park Y, Kang D, Choi KS. Marked enhancement in electron-hole separation
achieved in the low bias region using electrochemically prepared Mo-doped
BiVO4 photoanodes. Physical Chemistry Chemical Physics 2014;16(3):1238-
46.
36. Tolod K, Hernández S, Russo N. Recent Advances in the BiVO4
Photocatalyst for Sun-Driven Water Oxidation: Top-Performing Photoanodes
and Scale-Up Challenges. Catalysts. 2017;7(12).
37. Bai S, Yin W, Wang L, Li Z, Xiong Y. Surface and interface design in
cocatalysts for photocatalytic water splitting and CO2 reduction. RSC
Advances. 2016;6(62):57446-63.
80
38. Shi X, Choi IY, Zhang K, Kwon J, Kim DY, Lee JK, Oh SH, Kim JK, Park
JH. Efficient photoelectrochemical hydrogen production from bismuth
vanadate-decorated tungsten trioxide helix nanostructures. Nature
Communications. 2014;5:4775.
39. Kalanur SS, Yoo I-H, Park J, Seo H. Insights into the electronic bands of
WO3/BiVO4/TiO2, revealing high solar water splitting efficiency. Journal of
Materials Chemistry A. 2017;5(4):1455-61.
40. Pilli SK, Furtak TE, Brown LD, Deutsch TG, Turner JA, Herring AM. Cobaltphosphate (Co-Pi) catalyst modified Mo-doped BiVO4 photoelectrodes for
solar water oxidation. Energy & Environmental Science. 2011;4(12):5028-34.
41. Pihosh Y, Turkevych I, Mawatari K, Uemura J, Kazoe Y, Kosar S,Makita K,
Sugaya T, Matsui T, Fujita D, Tosa M, Kondo M, Kitamori T.
Photocatalytic generation of hydrogen by core-shell WO3/BiVO4 nanorods
with ultimate water splitting efficiency. Scientific Reports. 2015;5:11141.
42. Lee SA, Lee TH, Kim C, Lee MG, Choi M-J, Park H, Choi S, OH J, Jang
HW. Tailored NiOx/Ni Cocatalysts on Silicon for Highly Efficient Water
Splitting Photoanodes via Pulsed Electrodeposition. ACS Catalysis.
2018;8(8):7261-9.
43. Kim TW, Choi K-S. Nanoporous BiVO4 Photoanodes with Dual-Layer
Oxygen Evolution Catalysts for Solar Water Splitting. Science. 2014.
44. Kanan MW, Nocera DG. In situ formation of an oxygen-evolving catalyst in
neutral water containing phosphate and Co2+. Science. 2008;321(5892):1072-
5.
45. Choi S, Balamurugan M, Lee KG, Cho KH, Park S, Seo H,Nam KT.
Mechanistic Investigation of Biomass Oxidation Using Nickel Oxide
Nanoparticles in a CO2-Saturated Electrolyte for Paired Electrolysis. The
Journal of Physical Chemistry Letters 2020;11(8):2941-8.
46. Byun S, Kim B, Jeon S, Shin B. Effects of a SnO2 hole blocking layer in a
BiVO4-based photoanode on photoelectrocatalytic water oxidation. Journal
of Materials Chemistry A. 2017;5(15):6905-13.
47. Lee DK, Choi K-S. Enhancing long-term photostability of BiVO4
photoanodes for solar water splitting by tuning electrolyte composition.
Nature Energy. 2017;3(1):53-60.
48. Chadderdon DJ, Wu LP, McGraw ZA, Panthani M, Li W. Heterostructured
Bismuth Vanadate/Cobalt Phosphate Photoelectrodes Promote TEMPO‐
81
Mediated Oxidation of 5‐Hydroxymethylfurfural. ChemElectroChem.
2019;6(13):3387-92.
49. Roylance JJ, Kim TW, Choi K-S. Efficient and Selective Electrochemical and
Photoelectrochemical Reduction of 5-Hydroxymethylfurfural to 2,5-
Bis(hydroxymethyl)furan using Water as the Hydrogen Source. ACS
Catalysis. 2016;6(3):1840-7.
50. Özcan L, Yalçın P, Alagöz O, Yurdakal S. Selective photoelectrocatalytic
oxidation of 5-(hydroxymethyl)-2-furaldehyde in water by using Pt loaded
nanotube structure of TiO2 on Ti photoanodes. Catalysis Today.
2017;281:205-13.
51. Yurdakal S, Tek BS, Alagöz O, Augugliaro V, Loddo V, Palmisano G.
Photocatalytic Selective Oxidation of 5-(Hydroxymethyl)-2-furaldehyde to
2,5-Furandicarbaldehyde in Water by Using Anatase, Rutile, and Brookite
TiO2 Nanoparticles. ACS Sustainable Chemistry & Engineering.
2013;1(5):456-61.
52. Ventura M, Dibenedetto A, Aresta M. Heterogeneous catalysts for the
selective aerobic oxidation of 5-hydroxymethylfurfural to added value
products in water. Inorganica Chimica Acta. 2018;470:11-21.
53. Wu Q, He Y, Zhang H, Feng Z, Wu Y, Wu T. Photocatalytic selective
oxidation of biomass-derived 5-hydroxymethylfurfural to 2,5-diformylfuran
on metal-free g-C3N4 under visible light irradiation. Molecular Catalysis.
2017;436:10-8.
54. Colmenares JC, Luque R. Heterogeneous photocatalytic nanomaterials:
prospects and challenges in selective transformations of biomass-derived
compounds. Chemical Society Reviews. 2014;43(3):765-78.
55. Kou J, Lu C, Wang J, Chen Y, Xu Z, Varma RS. Selectivity Enhancement in
Heterogeneous Photocatalytic Transformations. Chemical Reviews.
2017;117(3):1445-514.
56. Tan HL, Amal R, Ng YH. Alternative strategies in improving the
photocatalytic and photoelectrochemical activities of visible light-driven
BiVO4: a review. Journal of Materials Chemistry A. 2017;5(32):16498-521.
57. Loiudice A, Cooper JK, Hess LH, Mattox TM, Sharp ID, Buonsanti R.
Assembly and Photocarrier Dynamics of Heterostructured Nanocomposite
Photoanodes from Multicomponent Colloidal Nanocrystals. Nano Letters.
2015;15(11):7347-54.
58. Seabold JA, Choi K-S. Efficient and Stable Photo-Oxidation of Water by a
Bismuth Vanadate Photoanode Coupled with an Iron Oxyhydroxide Oxygen
Evolution Catalyst. Journal of the American Chemical Society.
82
2012;134(4):2186-92.
59. Lee DK, Choi K-S. Enhancing long-term photostability of BiVO4
photoanodes for solar water splitting by tuning electrolyte composition.
Nature Energy. 2018;3(1):53-60.
60. Kim JH, Jang JW, Kang HJ, Magesh G, Kim JY, Kim JH,Lee J, Lee JS.
Palladium oxide as a novel oxygen evolution catalyst on BiVO4 photoanode
for photoelectrochemical water splitting. Journal of Catalysis. 2014;317:126-
34.
61. Nair V, Perkins CL, Lin Q, Law M. Textured nanoporous Mo:BiVO4
photoanodes with high charge transport and charge transfer quantum
efficiencies for oxygen evolution. Energy & Environmental Science.
2016;9(4):1412-29.
62. Liang Y, Messinger J. Improving BiVO4 photoanodes for solar water splitting
through surface passivation. Physical Chemistry Chemical Physics.
2014;16(24):12014-20.
63. Ji T, Li Z, Liu C, Lu X, Li L, Zhu J. Niobium-doped TiO2 solid acid catalysts:
Strengthened interfacial polarization, amplified microwave heating and
enhanced energy efficiency of hydroxymethylfurfural production. Applied
Catalysis B: Environmental. 2019;243:741-9. |