博碩士論文 107223009 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:29 、訪客IP:18.118.2.108
姓名 黃瑋芳(Wei-Fang Huang)  查詢紙本館藏   畢業系所 化學學系
論文名稱 設計合成以羅丹明為主體的汞離子化學感測器及其應用
(Rational Design and Synthesis of Rhodamine-Based Chemosensors for Hg(II) Ions)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-20以後開放)
摘要(中) 羅丹明及螢光素染料具有出色的光物理特性,例如高螢光量子產率、大的摩耳消光係數、可見光區域的吸收和放射波長以及可以直接用肉眼觀察到螺內醯胺環打開的螢光強度變化檢測過程,以至於被廣泛地用於構建螢光感測探針。在這項研究工作中,我們設計具有羅丹明或螢光素為主要架構的化合物,引入含有硫醚基團修飾的胺類化合物及相關胺基酸衍生物合成出一系列螢光化學感測器Rho6G-1-8、Rho6G-1-8及Fluor-1-4,藉由紫外光-可見光吸收及螢光放射光譜變化探討化學感測器對不同金屬離子的偵測感應能力。經由快速高通量篩選技術,我們發現了連接半胱胺酸的羅丹明螢光感測分子(Rho6G-6)對汞離子表現出「開啟」的螢光響應,並且具有顯著的靈敏度、高選擇性及抗干擾性,並且在進一步的研究中闡述,Rho6G-6和Hg(II)形成其金屬配位化合物的金屬-配體比為2:1。另一方面,我們將合成的螢光探針Rho6G-6在測試紙及活細胞的偵測系統中,成功地展現測定汞離子的能力,經由上述的結果都說明Rho6G-6在螢光感測汞離子的應用上具有很大的潛力。
摘要(英) For the development of fluorescent chemosensors, xanthenes, including rhodamines and fluoresceins, are highly favorable due to their excellent photophysical properties, such as high fluorescence quantum yield, large molar extinction coefficient, absorption and emission wavelength in the visible region. In general, Rhodamine- and fluorescein-based spirolactam or spirolactone derivatives are nonfluorescent and colorless, whereas ring-opening of the corresponding spirolactam/lactone gives rise to strong fluorescence emission and a pink color. In this work, we report the synthesis of a series of Hg(II)-sensitive rhodamine- and fluorescin-based derivatives (Rho6G-1-8, RhoB-1-8, and Fluor-1-4) from rhodamine 6G, rhoamine B, and fluorescein with methyl-S-bearing amines and amino acid esters. N-(Rhodamine-6G) thiolactam–methyl cysteine methyl ester (Rho6G-6) displayed selective colorimetric and fluorescence “turn-on” changes at 537 nm via a rhodamine ring-opening approach toward Hg(II) among other metal ions examined in 1% DMSO aqueous solution. The results demonstrated that Rho6G-6 forms in a 2:1 complex with Hg(II) binding mode and shown a remarkable ratiometric fluorescence enhancement. On the other hand, Rho6G-6 also successfully used in test strips and living cells systems for detection of Hg(II) ions. These results showed that Rho6G-6 will provide a potential chemosensor for Hg(II) in the future.
關鍵字(中) ★ 螢光化學感測器
★ 羅丹明
★ 螺內醯胺開環
★ 汞離子
★ 高通量篩選
★ Job′s plot實驗
★ 活細胞螢光成像
關鍵字(英) ★ fluorescent chemosensor
★ Rhodamine
★ opening of the spirolactam ring
★ mercury ion
★ high-throughput screening
★ Job’s plot
★ fluorescent imaging in living cells
論文目次 摘要 i
Abstract ii
目錄 iii
圖目錄 vi
表目錄 xi
簡稱用語對照表 xii
一、 緒論 1
1-1 前言 1
1-2 汞污染的來源及危害 2
1-3 汞偵測方法之發展 3
1-4 化學感測器的辨識原理 4
1-5 螢光化學感測器的組成 5
1-5-1 發色團(chromophore) 6
1-5-2 螢光團(fluorophore) 7
1-6 螢光化學感測器的訊號傳遞機制 10
1-6-1 光誘導電子轉移(photoinduced electron transfer, PET) 11
1-6-2 分子內電荷轉移(intramolecular charge transfer, ICT) 12
1-7 研究動機 14
二、 結果與討論 16
2-1目標染料分子的設計與合成路徑 16
2-1-1 胺基酸的酯化修飾 16
2-1-2 螺內環醯胺的合成機制 16
2-1-3 Rhodamine B系列分子 17
2-1-4 Rhodamine 6G系列分子 19
2-1-5 Fluorescein系列分子 20
2-1-6 對照組Rhodamine 6G系列分子 22
2-2 Rhodamine-based染料化合物對金屬離子的篩選實驗 23
2-2-1 實驗組分子的螢光光譜響應 23
2-2-2 螢光肉眼監測(fluorescent visual inspection) 27
2-2-3 對照組分子的螢光光譜響應 29
2-3 Rho6G-6與Rho6G-10對Hg2+的螢光響應比較 31
2-3-1 滴定實驗(titration experiment) 31
2-3-2 汞與其他金屬離子的競爭性實驗(competition experiment) 32
2-3-3 螢光光譜強度的時間依存分析(time-dependent fluorescence spectra) 34
2-4 螢光化學感測器Rho6G-6之光物理性質 35
2-4-1 UV-Vis吸收及螢光放射光譜 35
2-4-2 Job’s plot方法 36
2-4-3 質譜分析技術(mass spectrometry) 37
2-4-4 奈米電噴灑游離質譜法(nanospray-ESI-MS) 38
2-4-5 核磁共振氫譜1H-NMR滴定實驗 42
2-5 Rho6G-6對Hg2+的偵測應用 43
2-5-1 測試紙條方法(test strip method) 43
2-5-2 活細胞的螢光成像(fluorescent imaging for Hg2+ ions in living cells) 44
三、 結論 46
四、 實驗部分 48
4-1 實驗儀器 48
4-1-1核磁共振光譜儀(nuclear magnetic resonance spectroscopy) 48
4-1-2 高解析質譜儀(mass spectrometry) 48
4-1-3 多功能微孔盤式檢測儀(multimode plate reader) 49
4-1-4 傅立葉轉換紅外光光譜儀(Fourier transform infrared red spectrometer, FT-IR) 49
4-1-5 自動旋光度計(digital polarimeter) 49
4-1-6 紫外光-可見光分光光譜儀(ultraviolet-visible spectrophotometer) 49
4-1-7 螢光光譜儀(fluorescence spectrofluorometer) 49
4-2 實驗材料及藥品 50
4-2-1 薄層色層分析片(thin layer chromatography, TLC) 50
4-2-2 管柱色層分析(column chromatography) 50
4-3 光譜測量的溶液配製程序 50
4-3-1 探針化合物(probe molecule)的溶液配製 50
4-3-2 金屬過氯酸鹽(metal perchlorate)的溶液配製 50
4-4 實驗合成步驟 52
參考文獻 74
附錄 83
參考文獻 1. Chen, Y. C. Master thesis, Department of chemistry, National Sun Yat-sen University, 2014, pp 3–4.
2. Rice, K. M.; Walker, E. M.; Wu, M.; Gillette, C.; Blough, E. R. “Environmental mercury and its toxic effects.” J Prev Med Public Health 2014, 47, 74–83.
3. Engstrom, D. R. “Fish respond when the mercury rises.” Proc. Natl. Acad. Sci. U.S.A 2007, 104, 16394–16395.
4. 許道平(20060800):汞與人的一點關係,工安環保報導卷期:32,民95.08,頁29-30 (5064385),《數位典藏與數位學習聯合目錄》。
5. Lutter, R.; Irwin, E. “Mercury in the environment: A volatile problem.” Environment 2002, 44, 24–40.
6. Mergler, D.; Anderson, H. A.; Chan, L. H. M.; Mahaffey, K. R.; Murray, M.; Sakamoto, M.; Stern, A. H. “Methylmercury exposure and health effects in humans: A worldwide concern.” Ambio 2007, 36, 3–11.
7. Takeuchi, T.; Morikawa, N.; Matsumoto, H.; Shiraishi, Y. “A pathological study of Minamata disease in Japan.” Acta Neuropathol. 1962, 2, 40–57.
8. Harada, M. “Minamata disease: Methylmercury poisoning in Japan caused by environmental pollution.” Crit. Rev. Toxicol. 1995, 25, 1–24.
9. EPA U. Mercury update: impact on fish advisories. EPA Fact Sheet EPA-823-F-01-011, Office of Water, Washington, DC. 2001.
10. Warwick, D.; Young, M.; Palmer, J.; Ermel, R. W. “Mercury vapor volatilization from particulate generated from dental amalgam removal with a high-speed dental drill–A significant source of exposure.” J. Occup. Med. Toxicol. 2019, 14, 1–12.
11. Leopold, K.; Foulkes, M.; Worsfold, P. “Methods for the determination and speciation of mercury in natural waters–A review.” Anal. Chim. Acta 2010, 663, 127–138.
12. Chen, S. H.; Li, Y. X.; Li, P. H.; Xiao, X. Y.; Jiang, M.; Li, S. S.; Zhou, W. Y.; Yang, M.; Huang, X. J.; Liu, W. Q. “Electrochemical spectral methods for trace detection of heavy metals: A review.” Trends Anal. Chem. 2018, 106, 139–150.
13. (a) da Silva, M. J.; Paim, A. P. S.; Pimentel, M. F.; Cervera, M. L.; dela Guardia, M. “Determination of mercury in rice by cold vapor atomic fluorescence spectrometry after microwave-assisted digestion.” Anal. Chim. Acta 2010, 667, 43–48. (b) Tirtom, V. N.; Goulding, Ş.; Henden, E. “Application of a wool column for flow injection online preconcentration of inorganic mercury(II) and methyl mercury species prior to atomic fluorescence measurement.” Talanta 2008, 76, 1212–1217.
14. (a) Gao, Y.; DeGalan, S.; DeBrauwere, A.; Baeyens, W.; Leermakers, M. “Mercury speciation in hair by headspace injection-gas chromatography-atomic fluorescence spectrometry (methylmercury) and combustion-atomic absorption spectrometry (total Hg).” Talanta 2010, 82, 1919–1923. (b) Hinds, M. W. “Determination of mercury in gold bullion by flame and graphite furnace atomic absorption spectrometry.” Spectrochim Acta B 1998, 53, 1063–1068.
15. (a) Moreno, F.; García-Barrera, T.; Gómez-Ariza, J. L. “Simultaneous analysis of mercury and selenium species including chiral forms of selenomethionine in human urine and serum by HPLC column-switching coupled to ICP-MS.” Analyst 2010, 135, 2700–2705. (b) Balarama Krishna, M. V.; Chandrasekaran, K.; Karunasagar, D. “On-line speciation of inorganic and methyl mercury in waters and fish tissues using polyaniline micro-column and flow injection-chemical vapour generation-inductively coupled plasma mass spectrometry (FI-CVG-ICPMS).” Talanta 2010, 81, 462–472. (c) Cairns, W. R. L.; Ranaldo, M.; Hennebelle, R.; Turetta, C.; Capodaglio, G.; Ferrari, C. F.; Dommergue, A.; Cescon, P.; Barbante, C. “Speciation analysis of mercury in seawater from the lagoon of Venice by on-line pre-concentration HPLC-ICP-MS.” Anal. Chim. Acta 2008, 622, 62–69. (d) Fong, B. M. W.; Tak, S. S.; Lee, J. S. K.; Tam, S. “Determination of mercury in whole blood and urine by inductively coupled plasma mass spectrometry.” J. Anal. Toxicol. 2007, 31, 281–287.
16. West, M.; Ellis, A. T.; Potts, P. J.; Streli, C.; Vanhoof, C.; Wobrauschek, P. Atomic “Spectrometry Update-a review of advances in X-ray fluorescence spectrometry and its applications.” J. Anal. At. Spectrom. 2016, 31, 1706–1755.
17. Amde, M.; Yin, Y.; Zhang, D.; Liu, J. “Methods and recent advances in speciation analysis of mercury chemical species in environmental samples: A review.” Chem. Speciat. Bioavailab. 2016, 28, 51–65.
18. Krishna, A.; Tekuri, V.; Mohan, M.; Trivedi, D. R. “Sensors and Actuators B: Chemical Selective colorimetric chemosensor for the detection of Hg2 + and arsenite ions using Isatin based Schiff’s bases; DFT Studies and Applications in test strips.” Sens. Actuators. B Chem. 2019, 284, 271–280.
19. Singha, S.; Jun, Y. W.; Sarkar, S.; Ahn, K. H. “An Endeavor in the Reaction-Based Approach to Fluorescent Probes for Biorelevant Analytes: Challenges and Achievements.” Acc. Chem. Res. 2019, 52, 2571–2581.
20. Johnson, A. D.; Curtis, R. M.; Wallace, K. J. “Low molecular weight fluorescent probes (LMFPs) to detect the group 12 metal triad.” Chemosensors 2019, 7, 22.
21. Hulanicki, A.; Glab, S.; Ingman, F. “Chemical sensors definitions and classification.” Pure Appl. Chem. 1991, 63, 1247–1250.
22. Washington, D. C. Expanding the Vision of Sensor Materials. USA: National Academemis Press, National Research Council, Chapter 6, 73–88, 1995.
23. Phan, M. H.; Peng, H. X. “Giant magnetoimpedance materials: Fundamentals and applications.” Prog. Mater. Sci. 2008, 53, 323–420.
24. Xu, H.; Li, Y; Huang, N. J.; Yu, Z. R.; Wang, P. H.; Zhang, Z. H.; Xia, Q. Q.; Gong, L. X.; Li, S. N.; Zhao, L.; Zhang, G. D.; Tang, L. C. “Temperature-triggered sensitive resistance transition of graphene oxide wide-ribbons wrapped sponge for fire ultrafast detecting and early warning.” J. Hazard. Mater. 2019, 363, 286–294.
25. Kobayashi, M. “A perspective on steep-subthreshold-slope negative-capacitance field-effect transistor.” Appl. Phys. Express 2018, 11, 110–101.
26. Li, C.; Tan, Q.; Jia, P.; Zhang, W.; Liu, J.; Xue, C.; Xiong, J. “Review of research status and development trends of wireless passive LC resonant sensors for harsh environments.” Sensors 2015, 15, 13097–13109.
27. Balandin, A. A. “Low-frequency 1/f noise in graphene devices.” Nat. Nanotechnol. 2013, 8, 549–555.
28. Suárez, P. L.; García-Cortés, M.; Fernández-Argüelles, M. T.; Encinar, J. R.; Valledor, M.; Ferrero, F. J.; Campo, J. C.; Costa-Fernández, J. M. “Functionalized phosphorescent nanoparticles in (bio)chemical sensing and imaging – A review.” Anal. Chim. Acta 2019, 1046, 16–31.
29. Salerno, M.; Ajimo, J. J.; Dudley, J. A.; Binzel, K.; Urayama, P. “Characterization of dual-wavelength seminaphthofluorescein and seminapthorhodafluor dyes for pH sensing under high hydrostatic pressures.” Anal. Biochem. 2007, 362, 258– 67.
30. Urano, Y.; Asanuma, D.; Hama, Y.; Koyama, Y.; Barrett, T.; Kamiya, M.; Nagano, T.; Watanabe, T.; Hasegawa, A.; Choyke, P. L.; Kobayashi, H. “Selective molecular imaging of viable cancer cells with pH-activatable fluorescence probes.” Nat. Med. 2009, 15, 104–109.
31. Nolan, E. M.; Lippard, S. J. “Tools and tactics for the optical detection of mercuric ion.” Chem. Rev. 2008, 108, 3443–3480.
32. Hirano, T.; Kikuchi, K.; Urano, Y.; and Nagano, T. “Improvement and biological applications of fluorescent probes for zinc, ZnAFs.” J. Am. Chem. Soc. 2002, 124, 6555–6562.
33. Koide, Y.; Urano, Y.; Kenmoku, S.; Kojima, H.; Nagano, T. “Design and synthesis of fluorescent probes for selective detection of highly reactive oxygen species in mitochondria of living cells.” J. Am. Chem. Soc. 2007, 129, 10324–10325.
34. Kenmoku, S.; Urano, Y.; Kojima, H.; and Nagano, T. “Development of a highly specific rhodamine-based fluorescence probe for hypochlorous acid and its application to real-time imaging of phagocytosis.” J. Am. Chem. Soc. 2007, 129, 7313–7318.
35. Long, L.; Lin, W.; Chen, B.; Gao, W.; Yuan, L. “Construction of a FRET-based ratiometric fluorescent thiol probe.” Chem. Commun. 2011, 47, 893–895.
36. Wang, S.; Ren, J. S.; Shan, L. Y.; Sun, X. Y.; Di, B.; Gu, N.; Chen, J. L. “Triplexed tracking labile sulfur-containing species on a single-molecule “Nezha” sensor.” Anal. Chem. 2020, 92, 2672–2679.
37. Hazra, S.; Bodhak, C.; Chowdhury, S.; Sanyal, D.; Mandal, S.; Chattopadhyay, K.; Pramanik, A. “A novel tryptamine-appended rhodamine-based chemosensor for selective detection of Hg2+ present in aqueous medium and its biological applications.” Anal. Bioanal. Chem. 2019, 411, 1143–1157.
38. Sharma, H.; Kaur, N.; Singh, A.; Kuwar, A.; Singh, N. “Optical chemosensors for water sample analysis.” J. Mater. Chem. C 2016, 4, 5154–5194.
39. Czarnik, A. W. “Chemical communication in water using fluorescent chemosensors.” Acc. Chem. Res. 1994, 27, 302–308.
40. Wu, D.; Sedgwick, A. C.; Gunnlaugsson, T.; Akkaya, E. U.; Yoon, J.; James, T. D. “Fluorescent chemosensors: the past, present and future.” Chem. Soc. Rev. 2017, 46, 7105–7123.
41. Wu, J.; Liu, W.; Ge, J.; Zhang, H.; Wang, P. “New sensing mechanisms for design of fluorescent chemosensors emerging in recent years.” Chem. Soc. Rev. 2011, 40, 3483–3495.
42. Jung, H. S.; Kwon, P. S.; Lee, J. W.; Kim, J. I. I.; Hong, C. S.; Kim, J. W.; Yan, S.; Lee, J. Y.; Lee, J. H.; Joo, T.; Kim, J. S. “Coumarin-derived Cu2+-selective fluorescence sensor: Synthesis, mechanisms, and applications in living cells.” J. Am. Chem. Soc. 2009, 131, 2008–2012.
43. Chen, F.; Hou, F.; Huang, L.; Cheng, J.; Liu, H.; Xi, P.; Bai, D.; Zeng, Z. “Development of a novel fluorescent probe for copper ion in near aqueous media.” Dyes Pigm. 2013, 98, 146–152.
44. Lu, H.; Xue, Z.; MacK, J.; Shen, Z.; You, X.; Kobayashi, N. “Specific Cu2+-induced J-aggregation and Hg2+-induced fluorescence enhancement based on BODIPY.” Chem. Commun. 2010, 46, 3565–3567.
45. Li, Q.; Guo, Y.; Shao, S. “A BODIPY based fluorescent chemosensor for Cu(II) ions and homocysteine/cysteine.” Sens. Actuators. B Chem. 2012, 171–172, 872–877.
46. Jiang, X. H.; Wang, B. D.; Yang, Z. Y.; Liu, Y. C.; Li, T. R.; Liu, Z. C. “8-Hydroxyquinoline-5-carbaldehyde Schiff-base as a highly selective and sensitive Al3+ sensor in weak acid aqueous medium.” Inorg. Chem. Commun. 2011, 14, 1224–1227.
47. (a) Yu, C.; Chen, L.; Zhang, J.; Li, J.; Liu, P.; Wang, W.; Yan, B. “Off-On” based fluorescent chemosensor for Cu2+ in aqueous media and living cells. Talanta 2011, 85, 1627–1633. (b) Hu, Z. Q.; Wang, X. M.; Feng, Y. C.; Ding, L.; Lu, H. Y. “Sulfonyl rhodamine hydrazide: A sensitive and selective chromogenic and fluorescent chemodosimeter for copper ion in aqueous media.” Dyes Pigm. 2011, 88, 257–261. (c) Leite, A.; Silva, A. M. G.; Cunha-Silva, L.; DeCastro, B.; Gameiro, P.; Rangel, M. “Discrimination of fluorescence light-up effects induced by pH and metal ion chelation on a spirocyclic derivative of rhodamine B.” Dalton Trans. 2013, 42, 6110–6118.
48. Baeyer, A. “Ueber eine neue klasse von farbstoffen.” Ber. Dtsch. Chem. Ges. 1871, 4, 555–558.
49. Beija, M.; Afonso, C. A. M.; Martinho, J. M. G. “Synthesis and applications of rhodamine derivatives as fluorescent probes.” Chem. Soc. Rev. 2009, 38, 2410–2433.
50. Czarnik, A. W. Fluorescent Chemosensors for Ion and Molecule Recognition, American Chemical Society, Washington, DC, 1993.
51. Daly, B.; Ling, J.; DeSilva, A. P. “Current developments in fluorescent PET (photoinduced electron transfer) sensors and switches.” Chem. Soc. Rev. 2015, 44, 4203–4211.
52. Czerwieniec, R.; Yu, J.; Yersin, H. “Blue-light emission of Cu(I) complexes and singlet harvesting.” Inorg. Chem. 2011, 50, 8293–8301.
53. Kwok, R. T. K.; Leung, C. W. T.; Lam, J. W. Y.; Tang, B. Z. “Biosensing by luminogens with aggregation-induced emission characteristics.” Chem. Soc. Rev. 2015, 44, 4228–4238.
54. DeSilva, A. P.; Gunaratne, H. Q. N.; Gunnlaugsson, T.; Huxley, A. J. M.; McCoy, C. P.; Rademacher, J. T.; Rice, T. E. “Signaling recognition events with fluorescent sensors and switches.” Chem. Rev. 1997, 97, 1515–1566.
55. Zu, F.; Yan, F.; Bai, Z.; Xu, J.; Wang, Y.; Huang, Y.; Zhou, X. “The quenching of the fluorescence of carbon dots: A review on mechanisms and applications.” Microchim. Acta 2017, 184, 1899–1914.
56. Padalkar, V. S.; Seki, S. “Excited-state intramolecular proton-transfer (ESIPT)-inspired solid state emitters.” Chem. Soc. Rev. 2016, 45, 169–202.
57. Balzani, V.; Ceroni, P.; Ferrer, B. “Molecular devices.” Pure Appl. Chem. 2004, 76, 1887–1901.
58. Zhang, W.; Ma, Z.; Du, L.; Li, M. “Design strategy for photoinduced electron transfer-based small-molecule fluorescent probes of biomacromolecules.” Analyst 2014, 139, 2641–2649.
59. Sasaki, H.; Hanaoka, K.; Urano, Y.; Terai, T.; Nagano, T. “Design and synthesis of a novel fluorescence probe for Zn2+ based on the spirolactam ring-opening process of rhodamine derivatives.” Bioorg. Med. Chem. 2011, 19, 1072–1078.
60. Liu, J.; Qian, Y. “A novel naphthalimide-rhodamine dye: Intramolecular fluorescence resonance energy transfer and ratiometric chemodosimeter for Hg2+ and Fe3+.” Dyes Pigm. 2017, 136, 782–790.
61. Fang, Y.; Li, X.; Li, J. Y.; Wang, G. Y.; Zhou, Y.; Xu, N. Z.; Hu, Y.; Yao, C. “Thiooxo-Rhodamine B hydrazone derivatives bearing bithiophene group as fluorescent chemosensors for detecting mercury(II) in aqueous media and living HeLa cells.” Sens. Actuators. B Chem. 2018, 255, 1182–1190.
62. Hazra, S.; Bodhak, C.; Chowdhury, S.; Sanyal, D.; Mandal, S.; Chattopadhyay, K.; Pramanik, A. “A novel tryptamine-appended rhodamine-based chemosensor for selective detection of Hg2+ present in aqueous medium and its biological applications.” Anal. Bioanal. Chem. 2019, 411, 1143–1157.
63. Adamczyk, M.; Grote, J. “Efficient synthesis of rhodamine conjugates through the 2’-position.” Bioorg. Med. Chem. Lett. 2000, 10, 15391541.
64. Montalbetti, C. A. G. N.; Falque, V. “Amide bond formation and peptide coupling.” Tetrahedron 2005, 61, 1082710852.
65. Wilm, M.; Mann, M. “Analytical properties of the nanoelectrospray ion source.” Anal. Chem. 1996, 68, 1–8.
66. Juraschek, R.; Dulcks, T.; Karas, M. “Nanoelectrospray—More than just a minimized-flow electrospray ionization source.” J. Am. Soc. Mass Spectrom. 1999, 10, 300–308.
67. Chae, M. Y.; Czarnik, A. W. “Fluorimetric chemodosimetry. Mercury(II) and silver(I) indication in water via enhanced fluorescence signaling.” J. Am. Chem. Soc. 1992, 114, 9704–9705.
68. Lood, C. S.; Laine, A. E.; Högnäsbacka, A.; Nieger, M.; Koskinen, A. M. P. “Synthesis of chiral (indol-2-yl)methanamines and insight into the stereochemistry protecting effects of the 9-phenyl-9-fluorenyl protecting group.” Eur. J. Org. Chem. 2015, 17, 3793–3805.
69. Cox, M. M.; Jencks, W. P. “Catalysis of the Methoxyaminolysis of Phenyl Acetate by a Preassociation Mechanism with a Solvent Isotope Effect Maximum.” J. Am. Chem. Soc. 1981, 103, 572–580.
70. Hu, Z. Q.; Gu, Y. Y.; Hu, W. Z.; Sun, L. L.; Zhu, J. H.; Jiang, Y. “A highly selective and sensitive turn-on fluorescent chemosensor based on rhodamine 6G for iron(III).” ChemistryOpen 2014, 3, 264–268.
71. Yuan, L.; Lin, W.; Yang, Y.; Song, J. “A fast-responsive fluorescent probe for detection of gold ions in water and synthetic products.” Chem. Commun. 2011, 47, 4703–4705.
72. Quang, D. T.; Wu, J. S.; Luyen, N. D.; Duong, T.; Dan, N. D.; Bao, N. C.; Quy, P. T. “Rhodamine-derived Schiff base for the selective determination of mercuric ions in water media.” Spectrochim Acta A Mol. Biomol. Spectrosc. 2011, 78, 753–756.
73. Han, R.; Yang, X.; Zhang, D.; Fan, M.; Ye, Y.; Zhao, Y. “A bis(rhodamine)-based highly sensitive and selective fluorescent chemosensor for Hg(II) in aqueous media.” New J. Chem. 2012, 36, 1961–1965.
74. Lin, W.; Cao, X.; Ding, Y.; Yuan, L.; Long, L. “A highly selective and sensitive fluorescent probe for Hg2+ imaging in live cells based on a rhodamine-thioamide-alkyne scaffold.” Chem. Commun. 2010, 46, 3529–3531.
75. Yu, H.; Li, G.; Zhang, B.; Zhang, X.; Xiao, Y.; Wang, J.; Song, Y. “A neutral pH probe of rhodamine derivatives inspired by effect of hydrogen bond on pKa and its organelle-targetable fluorescent imaging.” Dyes Pigm. 2016, 133, 93–99.
76. Huang, C.; Yin, Q.; Meng, J.; Zhu, W.; Yang, Y.; Qian, X.; Xu, Y. “Versatile probes for the selective detection of vicinal-dithiol-containing proteins: Design, synthesis, and application in living cells.” Chem. Eur. J. 2013, 19, 7739–7747.
指導教授 謝俊結 林子超(Jiun-Jie Shie Tzu-Chau Lin) 審核日期 2020-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明