博碩士論文 107324069 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:18.219.22.169
姓名 蔡宇博(Yu-Po Tsai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 仿生非虹彩光子晶體導電墨水
相關論文
★ 利用高分子模版製備具有表面增強拉曼訊號之奈米銀陣列基板★ 溶劑退火法調控雙團鏈共聚物薄膜梯田狀表面浮凸物與奈米微結構
★ 新穎硬桿-柔軟雙嵌段共聚物與高分子混摻之介觀形貌★ 超分子側鏈型液晶團鏈共聚物自組裝薄膜
★ 利用溶劑退火法調控雙團鏈共聚物奈米薄膜之自組裝結構★ 溶劑退火誘導聚苯乙烯聚4-乙烯吡啶薄膜不穩定性現象之研究
★ 光化學法調控嵌段共聚物有序奈米結構薄膜及其模板之應用★ 製備具可調控孔洞大小的奈米結構碳材用於增強拉曼效應之研究
★ 結合嵌段共聚物自組裝及微乳化法製備三維侷限多層級結構★ 嵌段共聚物/多巴胺混摻體自組裝製備三維多尺度孔隙模板
★ 弱分離嵌段共聚物與均聚物雙元混合物在薄膜中的相行為★ 摻雜效應對聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸紫外光照-導電度刺激響應之影響與其應用
★ 可撓式聚(3,4-乙烯二氧噻吩):聚苯乙烯磺酸熱電裝置研究:微結構調控增進熱電性質★ 由嵌段共聚物膠束模板化的多層級孔洞碳材: 從膠束(微胞)組裝到電化學應用
★ 聚苯乙烯聚4-乙烯吡啶共聚物微胞薄膜之聚變與裂變動態結構演化之研究★ 除潤現象誘導非對稱型團鏈共聚物薄膜之層級結構
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 摘要
在此研究中,我們的目的為開發具非虹彩性光子晶體導電墨水,且具大面積塗佈的功能。為了明確定義何謂短程有序,我們透過穿透式X光顯微術以及同調X光散射重疊關聯影像顯微術,發現了藍黃金剛鸚鵡以及紅缳鳥的羽毛呈現高亮度非虹彩性的結構色,是因存在微米級多晶態光子晶體結構所導致。透過此仿生的概念我們提出利用電荷補丁(charge patch)原理,將導電高分子PEDOT:PSS摻雜進次微米聚苯乙烯膠體粒子形成在溶液態具有非虹彩性紅、綠、藍三元結構色。深入解於溶液態形成光子晶體的機理,我們使用了超小角度X光散射,發現聚苯乙烯膠體粒子形成核-殼結構並聚集成六方最密堆積光子晶體結構。在透過添加3wt%的聚乙二醇寡聚體於導電墨水,可誘導更多的微米級多晶態光子晶體產生,導致增加色彩亮度50%且保有非虹彩性質。此光子晶體溶液透過簡單塗佈或書寫可連續產生大面積光子晶體。因此可應用於電致變色以及藝術美學導電圖案等。
摘要(英) Abstract
In this study, we purposed non-iridescent photonic crystal conductive inks. Feathers of blue-and-yellow macaw and ibis were investigated by synchrotron-based transmission X-ray microscopy and coherent X-ray ptychography. Showing high brightness and non-iridescent colors of the feathers is caused by the existence of polycrystalline-type photonic crystal with several micrometer grain sizes. Inspired by the polycrystalline feature of the feathers, we utilized the conductive polymer PEDOT:PSS doped into the submicron polystyrene colloidal suspension to form the photonic crystal with non-iridescent red, green and blue color, according to the charge patch principle. For understanding the crystallization mechanism of photonic crystal in the solution state, the PEDOT@ PS shell-core structure with hexagonal closed packing was found by ultra-small-angle X-ray scattering. Furthermore, we also found that the ink doping with 3wt% polyethylene glycol oligomer could increase ca. 50% brightness of structural colors but remaining the non-iridescent property, because the nucleation density of the polygrains of photonic crystals was increased. The photonic crystal ink can continuously fabricate the large-area non-iridescent colorful films for applications of wearable devices in electric-stimulated photonic crystals or artistic conductive photonic crystal patterns.
關鍵字(中) ★ 光子晶體
★  膠體粒子
★  導電墨水
關鍵字(英) ★ Photonic Crystal
★  Colloidal
★  Conductive Ink
論文目次 目錄
摘要 1
Abstract 2
致謝 4
目錄 5
圖目錄 8
第一章 簡介 1
1-1 光子晶體之基本介紹 1
1-2 自然界生物之光子晶體結構 2
1-3 鳥類羽毛之非虹彩性結構 3
1-4 仿生光子晶體 5
1-4-1 膠體粒子自組裝之三維虹彩光子晶體 5
1-4-2 膠體粒子自組裝之三維非虹彩光子晶體 8
1-4-3 膠體粒子在溶液中之光子晶體 11
1-5 導電墨水材料 13
1-6 導電高分子與膠體粒子在溶液中之相互作用 14
1-7 研究動機 17
第二章 實驗 18
2-1 實驗藥品 18
2-1-1 均一分布聚苯乙烯微球合成 18
2-1-2 光子晶體製備藥品 19
2-1-3實驗儀器 20
2-2 實驗製備 21
2-2-1 均一尺寸聚苯乙烯微球合成 21
2-2-2 非虹彩性光子晶體水溶液製備 22
2-2-3 光子晶體薄膜製備 22
2-2-4 大面積光子晶體薄膜製備 23
2-2-5結晶度控制實驗 24
2-3 儀器原理 24
2-3-1 掃描式電子顯微鏡(SEM) 24
2-3-2 穿透式電子顯微鏡(TEM) 25
2-3-3 超小角度X-ray散射(USAXS) 25
2-3-4 同調X光散射重疊關聯影像顯微術(Coherent X-ray Ptychography) 27
2-6-5穿透式X-ray顯微術(Transmission X-ray Microscopy) 28
2-3-6 紫外-可見光光譜儀(UV-VIS) 30
2-3-7 動態可見光散射(DLS) 30
第三章 結果與討論 31
3-1 藍黃金剛鸚鵡與紅環鳥羽毛結構色之探討 31
3-2 水溶液中之亞穩態非虹彩性光子晶體機制探討 33
3-2-1 光子晶體溶液結構分析 33
3-2-2 光子晶體溶液之光學性質分析 39
3-3 固態光子晶體結構分析 40
3-3-1 非虹彩性光子晶體薄膜結構分析 40
3-3-2 光子晶體薄膜之光學性質分析 42
3-4 不同濃度聚乙二醇摻雜對膠體結晶成核密度之影響 44
3-5 非虹彩性光子晶體薄膜應用 46
結論 49
參考文獻 50
參考文獻 參考文獻
[1] E. Yablonovitch “Inhibited Spontaneous Emission in Solid-State Physics and Electronics", Phys. Rev. Lett., Vol. 58, pp.20, May. 1987.
[2] S. John, "Strong Localization of Photons in Certain Disordered Dielectric Superlattices", Phys. Rev. Lett. Vol. 58, pp.248, June. 1987.
[3] J. P. Ge and Y. D. Yin, “Responsive photonic crystals”, Angew, Chem., Int. Ed., Vol. 50, pp.1492– 1522, Feb. 2011
[4] K. M. Cooper, R. T. Hanlon, and B. U. Budelmann, “Physiological color change in squid iridophores “, Cell Tissue Res., Vol. 259, 1990.
[5] J. Zi, X. Yu, Y. Li, X. Hu, C.Xu, X. Wang, X. Liu, and R. Fu, ‘”Coloration strategies in peacock feathers”. PNAS, Vol. 100, pp. 12576–12578, Oct. 2003.
[6] J. M. Medina, J. A. Díaz, and P. Vukusic, "Classification of peacock feather reflectance using principal component analysis similarity factors from multispectral imaging data," Opt. Express, Vol. 23, pp. 10198-10212, Apr. 2015
[7] J. Teyssier, S. V. Saenko, D. van der Marel, and M. C. Milinkovitch “Photonic crystals cause active colour change in chameleons”. Nat Commun, Vol. 6, pp. 63-68, Mar. 2015
[8] E. R. Dufresne, H. Noh, V. Saranathan, S. G. J. Mochrie, H. Cao and R. O. Prum, “ Self-assembly of amorphous biophotonic nanostructures by phase separation”, Soft Matter, Vol. 5, pp.1792–1795, Mar. 2009.
[9] V. Saranathan, J. D. Forster, H. Noh, S. Liew, S. G. J. Mochrie, H. Cao,
E. R. Dufresne and R. O. Prum, “Structure and optical function of amorphous photonic nanostructures from avian feather barbs: a comparative small angle X-ray scattering (SAXS) analysis of 230 bird species”, J. R. Soc. Interface, Vol. 9, pp.2563–2580, May. 2012.
[10] G. Liu, L. Zhou, Q. Fan, L. Chai and J. Shao, “The vertical deposition self-assembly process and the formation mechanism of poly(styrene-co-methacrylic acid) photonic crystals on polyester fabrics”, J. Mater. Sci., Vol. 51, pp.2859-2868, Nov. 2016.
[11] S. H. Park, D. Qin and Y. N. Xia, “Crystallization of Mesoscale Particles over Large Areas”, Adv. Mater., Vol 10, pp.1028-1032, Jan. 1999.
[12] P. Jiang and M. J. McFarland, “Large-Scale Fabrication of Wafer-Size Colloidal Crystals, Macroporous Polymers and Nanocomposites by Spin-Coating”, J. Am. Chem. Soc., Vol. 126, pp.13778-13786, Oct. 2004.
[13] L. Y. Cui, Y. Z. Zhang, J. X. Wang, Y. B. Ren, Y. L. Song and L. Jiang, Macromol, “Ultra-fast fabrication of colloidal photonic crystals by spray coating”, Rapid Commun., Vol. 30, pp.598–603, Jan. 2009.
[14] Y. Takeoka, “Stimuli-responsive opals: colloidal crystals and colloidal amorphous arrays for use in functional structurally colored materials”, J. Mater. Chem. C, Vol. 1, pp. 6059–6074, Jul. 2003.
[15] H. Fudouzi and Y. Xia, “Colloidal Crystals with Tunable Colors and Their Use as Photonic Papers”, Langmuir, Vol.19, pp. 9653-9660, Sep. 2003.
[16] Y. Takeoka, and M. Watanabe, “Tuning Structural Color Changes of Porous Thermosensitive Gels through Quantitative Adjustment of the Cross-Linker in Pre-gel Solutions” Langmuir, Vol. 19, pp. 9104-9106, Oct. 2003.
[17] D. P. Puzzo, A. C. Arsenault, I. Manners and G. a Ozin, “Electroactive inverse opal: a single material for all colors”, Angew. Chemie Int. Ed., Vol. 48, pp.943–947, Jan. 2009.
[18] J. D. Forster, H. Noh, S. F. Liew, V. Saranathan, C. F. Schreck, L. Yang, J. G. Park, R. O. Prum, S. G. J. Mochrie, C. S. O′Hern, H. Cao, and E. R. Dufresne, “Biomimetic Isotropic Nanostructures for Structural Coloration”, Adv. Mater, Vol.22, pp.2939-2944, Jul. 2010.
[19] M. Iwata, M. Teshima, T. Seki, S. Yoshioka, Y. Takeoka, “Bio-Inspired Bright Structurally Colored Colloidal Amorphous Array Enhanced by Controlling Thickness and Black Background”, Adv. Mater., Vol. 29, Jul. 2017.
[20] D. P. Yang, G. L. Liao, and S. M. Huang, “Hand Painting of Non-iridescent Structural Multicolor through the Self-Assembly of YOHCO3 Colloids and Its Application for Anti-Counterfeiting”, Langmuir, Vol. 35, pp.8428−8435, Jun. 2019.
[21] I. Lee, D. Kim, J. Kal, H. Baek, D. Kwak, D. Go, E. Kim, C. Kang, J. Chung, Y. Jang, S. Ji, J. Joo and Y. Kang, ” Quasi‐Amorphous Colloidal Structures for Electrically Tunable Full‐Color Photonic Pixels with Angle‐Independency”, Adv. Mater., Vol. 22, pp.4973–4977, Aug. 2010.
[22] J. G. Dr., Y. Hu, and Y. Yin, “Highly Tunable Superparamagnetic Colloidal Photonic Crystals”, Angew. Chem. Int. Ed., Vol. 119, pp.7572-7575, Oct. 2007.
[23] D. P. Yang, S. Ye, and J. P. Ge, “Solvent Wrapped Metastable Colloidal Crystals: Highly Mutable Colloidal Assemblies Sensitive to Weak External Disturbance”, J. Am. Chem. Soc., Vol. 135, pp.18370–18376, Nov. 2013.
[24] H. Liu, Q. Li, S. Zhang, R. Yin, X. Liu, Y. He, K. Dai, C. Shan, J. Guo, C. Liu, C. Shen, X. Wang, N. Wang, Z. Wang, R. Wei and Z. Guo, “Electrically conductive polymer composites for smart flexible strain sensors: a critical review”, J Mater Chem C, Vol. 6, pp. 12121-12141, Oct. 2018.
[25] Jan W. Gooch, Encyclopedic Dictionary of Polymers. 2007.
[26] Paul C. Hiemenz, Raj Rajagopalan, Principles of Colloid and Surface Chemistry, Revised and Expanded, CRC Press, 1997.
[27] Mandel, M., Polyelectrolytes,” Encyclopedia of Polymer Science and Engineering, 2nd Ed., Wiley, New York, 1985.
[28] Cohen Stuart, M. A., Scheutjens, J. M. H. M., and Fleer, G. J. Polydispersity effects and the interpretation of polymer adsorption isotherms, J. Polymer Sci., 1980.
[29] Kasper, D. R., Theoretical and experimental investigations of the flocculation of charged particles in aqueous solutions by polyelectrolytes of opposite charge, CIT, Pasadena, 1971.
[30] Pelzer, R., Polyacrylamides (PAM) as retention aids, Chemical Additives for the Production of Pulp and Paper, 2008.
[31] Gregory, J., “Rates of flocculation of latex particles by cationic polymers”, J. Colloid Interface Sci. Vol. 42, pp.448-456, Feb. 1973.
[32] Fleer, G. J., Cohen-Stuart, M. A., Scheutjens, J. M. H. M., Cosgrove, T., and Vincent, B. (eds.), Polymers at Interfaces, Chapman and Hall, London, 1993.
[33] M. A. Hubbe, A. Sundberg, P. Mocchiutti, Y. Ni, and R. Pelton, "Dissolved and colloidal substances (DCS) and the charge demand of papermaking process waters and suspensions: A Review," BioRes. Vol. 7, pp.6109-6193, 2012
[34] J. H. Kim, M. Chainey, M. S. El‐Aasser and J. W. Vanderhoff, “Emulsifier‐free emulsion copolymerization of styrene and sodium styrene sulfonate”, Polym. Sci., Polym. Chem, Vol. 30, pp.171-183, Feb. 1992.
[35] Jens Als‐Nielsen Des McMorrow , Elements of Modern X‐ray Physics, Second Edition , 2011.
[36] 鄭有舜, X-光小角度散射在軟物質研究上的應用, 物理雙月刊廿六卷二期, 2004.
[37] Thibault, P., Dierolf, M., Menzel, A., Bunk, O. & David, C., “High-resolution scanning X-ray diffraction microscopy”, Science, Vol. 321, pp.379–382, 2008.
[38] Pfeiffer, F. “X-ray ptychography”. Nature Photon, Vol. 12, pp.9–17, 2018.
[39] Mau-Tsu Tang, Yen-Fang Song, Gung-Chian Yin, Jian-Hua Chen, Yi-Ming Chen, Fu-Rong Chen, Keng S. Liang, 穿透式 X 光顯微術之原理與應用, 科儀新知第二十七卷第三期, 2005.
[40] A Guinier and G. Fournet, Small-Angle Scattering of X-Rays, John Wiley and Sons, New York, 1955.
[41] G Beaucage, “Approximations Leading to a Unified Exponential/Power-Law Approach to Small-Angle Scattering”, J. Appl. Cryst., Vol. 28, pp.717-728, 1995.
[42] T. Horii, H. Hikawa, M. Katsunuma, and H. Okuzaki, ” Synthesis of highly conductive PEDOT:PSS and correlation with hierarchical structure”, Polymer, Vol. 140, pp. 33-38, Feb. 2018.
[43] H. Yan, S. Arima, Y. Mori, T. Kagata, H. Sato, H. Okuzaki, “Poly(3,4ethylenedioxythiophene) /poly(4-styrenesulfonate): Correlation between colloidal particles and thin films”, Thin Solid Films, Vol. 517, pp.3299–3303, 2009.
[44] A. Mengistie, D., Wang, P.-C., and Chu, C.-W., “Effect of molecular weight of additives on the conductivity of PEDOT:PSS and efficiency for ITO-free organic solar cells”, J. Mater. Chem. A, Vol.1, pp.9907-9915, Jun. 2013.
[45] 網路資料online resources, 台北市立動物園。取自https://www.zoo.gov.taipei/
[46] R. O’Neill, H.O. McCarthy, E.B. Montufar, M. P. Ginebra, D.I. Wilson, A. Lennon, N. Dunne, “Critical review: Injectability of calcium phosphate pastes and cements.”, Acta Biomaterialia, Vol. 50, pp.1-19, Nov. 2017.
指導教授 孫亞賢(Ya-Sen Sun) 審核日期 2020-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明