參考文獻 |
參考文獻
[1] D.M. Newman, M.L. Wears, M. Jollie, and D. Choo, “Fabrication and characterization of nano-particulate PtCo media for ultra-high density perpendicular magnetic recording,” Nanotechnology, 18 (2007) 205.
[2] T. Søndergaard and S.I. Bozhevolnyi, “Metal nano-strip optical resonators,” Optical Society of America, 15 (2007) 4198-4204.
[3] K.-Q. Peng, X. Wang, X. Wu, and S.-T. Lee, “Fabrication and photovoltaic property of ordered macroporous silicon,” Applied Physics Letters, 95 (2009) 143.
[4] M.K. Tanmoy Basu, Mahesh Saini, Jay Ghatak, Biswarup Satpati, and Tapobrata Som, “Surfing silicon nanofacets for cold cathode electron emission sites,” ACS Applied Materials & Interfaces, 44 (2017) 38931-38942.
[5] J.Ji, H.Zhang, Y.Qiu, L.Wang, Y.Wang, and L.Hu, “Fabrication and photoelectrochemical properties of ordered Si nanohole arrays,” Applied Surface Science, 292 (2014) 86-92.
[6] P. Bhattacharya, S. Gohil, J. Mazher, S. Ghosh, and P. Ayyub, “Universal, geometry-driven hydrophobic behaviour of bare metal nanowire clusters,” Nanotechnology, 19 (2008) 757.
[7] B. Gattu, R. Epur, P.H. Jampani, R. Kuruba, M.K. Datta, and P.N. Kumta, “Silicon–Carbon core–shell hollow nanotubular configuration high-performance lithium-ion anodes,” The Journal of Physical Chemistry C, 121 (2017) 9662-9671.
[8] D.P. Yu, Y.J. Xing, Q.L. Hang, H.F. Yan, J. Xu, Z.H. Xi, and S.Q. Feng, “Controlled growth of oriented amorphous silicon nanowires via a solid-liquid-solid (SLS) mechanism,” Physica E, 9 (2001) 305-309.
[9] Y.F. Tzeng, H.C. Wu, P.S. Sheng, N.H. Tai, H.T. Chiu, C.Y. Lee, and I.N. Lin, “Stacked silicon nanowires with improved field enhancement factor,” ACS Applied Materials & Interfaces, 2 (2010) 331-334.
[10] V. Kumar, S.K. Saxena, V. Kaushik, K. Saxena, A.K. Shukla, and R. Kumar, “Silicon nanowires prepared by metal induced etching (MIE): good field emitters,” RSC Advances, 4 (2014) 57799-57803.
[11] C. Li, G. Fang, S. Sheng, Z. Chen, J. Wang, S. Ma, and X. Zhao, “Raman spectroscopy and field electron emission properties of aligned silicon nanowire arrays,” Physica E, 30 (2005) 169-173.
[12] S. Chen, W. Yang, J. Zhu, L. Fu, D. Li, and L. Zhou, “Preparation of highly-ordered lanthanum hexaboride nanotube arrays and optimizing its field emission property by ion bombardment post-treatment,” Journal of Materials Science: Materials in Electronics, 29 (2018) 10008-10015.
[13] Monika, R. Kumar, R.P. Chauhan, R. Kumar, and S.KChakarvarti, “Preparation and field emission study of low-dimensional ZnS arrays and tubules,” Journal of Experimental Nanoscience, 10 (2015) 126-134.
[14] J.K. Rath, F.D.Tichelaar, H. Meiling, and R.E.I. Schropp, “Hot-wire CVD poly-silicon films for thin film devices,” Materials Research Society, 507 (1998) 879-890.
[15] K. Bruhne, M.B. Schubert, C. Kohler, and J.H. Werner, “Nanocrystalline silicon from hot-wire deposition a photovoltaic material,” Thin Solid Films, 395 (2001) 163–168.
[16] B. Schroeder, U. Weber, H. Seitz, A. Ledermann, and C. Mukherjee, “Current status of the thermo-catalytic (hot-wire) CVD of thin silicon films for photovoltaic applications,” Thin Solid Films, 395 (2001) 298–304.
[17] H. Meiling, A.M. Brockhoff, J.K. Rath, and R.E.I. Schropp, “Hydrogenated amorphous and polycrystalline silicon TFTs by hot-wire CVD,” Non-Crystalline Solids, 227–230 (1998) 1202–1206.
[18] E. Iwaniczko, Y. Xu, R.E.I. Schropp, and A.H. Mahan, “Microcrystalline silicon for solar cells deposited at high rates by hot-wire CVD,” Thin Solid Films, 430 (2003) 212-215.
[19] M. Lu, M.K. Li, L.B. Kong, X.Y. Guo, and H.L. Li, “Silicon quantum-wires arrays synthesized by chemical vapor deposition and its micro-structural properties,” Chemical Physics Letters, 374 (2003) 542-547.
[20] J.Y. Kim, J.H. Ahn, D.I. Moon, T.J. Park, S.Y. Lee, and Y.K. Choi, “Multiplex electrical detection of avian influenza and human immunodeficiency virus with an underlap-embedded silicon nanowire field-effect transistor,” Biosensors and Bioelectronics, 55 (2014) 162-167.
[21] Y. Engel, R. Elnathan, A. Pevzner, G. Davidi, E. Flaxer, and F. Patolsky, “Supersensitive detection of explosives by silicon nanowire arrays,” Angewandte Chemie, 49 (2010) 6830-6835.
[22] X.T. Zhou, J.Q. Hu, C.P. Li, D.D.D. Ma, C.S. Lee, and S.T. Lee, “Silicon nanowires as chemical sensors,” Chemical Physics Letters, 369 (2003) 220-224.
[23] J.F. Hsu, B.R. Huang, C.S. Huang, and H.L. Chen, “Silicon nanowires as pH sensor,” Japanese Journal of Applied Physics, 44 (2005) 2626–2629.
[24] W. Cheng, L. Yu, D. Kong, Z. Yu, H. Wang, Z. Ma, Y. Wang, J. Wang, L. Pan, and Y. Shi, “Fast-response and low-hysteresis flexible pressure sensor based on silicon nanowires,” IEEE Electron Device Letters, 39 (2018) 1069-1072.
[25] D. Wu, Z. Lou, Y. Wang, Z. Yao, T. Xu, Z. Shi, J. Xu, Y. Tian, X. Li, and Y.H. Tsang, “Photovoltaic high-performance broadband photodetector based on MoS2/Si nanowire array heterojunction,” Solar Energy Materials and Solar Cells, 182 (2018) 272-280.
[26] L. Zeng, S. Lin, Z. Lou, H. Yuan, H. Long, Y. Li, W. Lu, S.P. Lau, D. Wu, and Y.H. Tsang, “Ultrafast and sensitive photodetector based on a PtSe2/silicon nanowire array heterojunction with a multiband spectral response from 200 to 1550 nm,” NPG Asia Materials, 10 (2018) 352-362.
[27] E. Garnett and P. Yang, “Light trapping in silicon nanowire solar cells,” Nano Letters, 10 (2010) 1082-1087.
[28] F.Wang, Y.Zhang, M.Yang, L.Yang, Y.Sui, J. Yang, Y. Zhao, and X. Zhang, “Realization of 16.9% efficiency on nanowires heterojunction solar cells with dopant-free contact for bifacial polarities,” Advanced Functional Materials, 28 (2018) 1805001.
[29] K. Peng, X. Wang, and S.-T. Lee, “Silicon nanowire array photoelectrochemical solar cells,” Applied Physics Letters, 92 (2008) 163.
[30] Y. Yang, G. Meng, X. Liu, L. Zhang, Z. Hu, C. He, and Y. Hu, “Aligned SiC porous nanowire arrays with excellent field emission properties converted from Si nanowires on silicon wafer,” American Chemical Society, 112 (2008) 20126–20130.
[31] H.C. Wu, T.Y. Tsai, F.H. Chu, N.H. Tai, H.N. Lin, H.T. Chiu, and C.Y. Lee, “Electron field emission properties of nanomaterials on rough silicon rods,” American Chemical Society, 114 (2010) 130–133.
[32] S. Lee, J. Yoon, B. Koo, D.H. Shin, J.H. Koo, C.J. Lee, Y.-W. Kim, H. Kim, and T. Lee, “Formation of vertically aligned cobalt silicide nanowire arrays through a solid-state reaction,” IEEE Transactions on Nanotechnology, 12 (2013) 704-711.
[33] H.F. Hsu, J.Y. Wang, and Y.H. Wu, “KOH etching for tuning diameter of Si nanowire arrays and their field emission characteristics,” Journal of The Electrochemical Society, 161 (2014) 53-56.
[34] Y. Hung, Jr., S.L. Lee, L.C. Beng, H.C. Chang, Y.J. Huang, K.Y. Lee, and Y.S. Huang, “Relaxing the electrostatic screening effect by patterning vertically-aligned silicon nanowire arrays into bundles for field emission application,” Thin Solid Films, 556 (2014) 146-154.
[35] W.P.R. Liyanage and M. Nath, “CdS–CdTe heterojunction nanotube arrays for efficient solar energy conversion,” Journal of Materials Chemistry A, 4 (2016) 14637-14648.
[36] M. Xue, F. Li, D. Chen, Z. Yang, X. Wang, and J. Ji, “High-oriented polypyrrole nanotubes for next-generation gas sensor,” Advanced Materials, 28 (2016) 8265-8270.
[37] S.L. Cheng, C.H. Chung, and H.C. Lee, “A study of the synthesis, characterization, and kinetics of vertical silicon nanowire arrays on (001) Si substrates,” Journal of The Electrochemical Society, 155 (2008) 711-714.
[38] B. Ozdemir, M. Kulakci, R. Turan, and H.E. Unalan, “Effect of electroless etching parameters on the growth and reflection properties of silicon nanowires,” Nanotechnology, 22 (2011) 155.
[39] A.H. Chiou, T.C. Chien, C.K. Su, J.F. Lin, and C.Y. Hsu, “The effect of differently sized Ag catalysts on the fabrication of a silicon nanowire array using Ag-assisted electroless etching,” Current Applied Physics, 13 (2013) 717-724.
[40] L.U. Vinzons, L. Shu, S. Yip, C.Y. Wong, L.L.H. Chan, and J.C. Ho, “Unraveling the morphological evolution and etching kinetics of porous silicon nanowires during metal-assisted chemical etching,” Nanoscale Research Letters, 12 (2017) 385.
[41] S.L. Cheng, C.H. Lo, C.F. Chuang, and S.W. Lee, “Site-controlled fabrication of dimension-tunable Si nanowire arrays on patterned (001)Si substrates,” Thin Solid Films, 520 (2012) 3309-3313.
[42] Z. Feng, K.Q. Lin, Y.C. Chen, and S.L. Cheng, “Fabrication and field-emission properties of vertically-aligned tapered [110]Si nanowire arrays prepared by nanosphere lithography and electroless Ag-catalyzed etching,” Nano, 13 (2018) 185.
[43] S.L. Cheng, H.C. Lin, Y.H. Huang, and S.C. Yang, “Fabrication of periodic arrays of needle-like Si nanowires on (001)Si and their enhanced field emission characteristics,” RSC Advances, 7 (2017) 23935-23941.
[44] S.L. Cheng, C.Y. Chen, and S.W. Lee, “Kinetic investigation of the electrochemical synthesis of vertically-aligned periodic arrays of silicon nanorods on (001)Si substrate,” Thin Solid Films, 518 (2010) S190-S195.
[45] Z. Lu, T. Wong, T.-W. Ng, and C. Wang, “Facile synthesis of carbon decorated silicon nanotube arrays as anode material for high-performance lithium-ion batteries,” RSC Advances, 4 (2014) 2440-2446.
[46] Z. Zhang, L. Liu, T. Shimizu, S. Senz, and U. Gosele, “Synthesis of silicon nanotubes with cobalt silicide ends using anodized aluminum oxide template,” Nanotechnology, 21 (2010) 603.
[47] C. Wang, J. Wen, F. Luo, B. Quan, H. Li, Y. Wei, C. Gu, and J. Li, “Anisotropic expansion and size-dependent fracture of silicon nanotubes during lithiation,” Journal of Materials Chemistry A, 7 (2019) 15113-15122.
[48] X. Xu, Q. Yang, N. Wattanatorn, C. Zhao, N. Chiang, S.J. Jonas, and P.S. Weiss, “Multiple-patterning nanosphere lithography for fabricating periodic three-dimensional hierarchical nanostructures,” ACS Nano, 11 (2017) 10384-10391.
[49] Y. Zhang, H. Wang, Z. Liu, B. Zou, C. Duan, T. Yang, X. Zhang, C. Zheng, and X. Zhang, “Optical absorption and photoelectrochemical performance enhancement in Si tube array for solar energy harvesting application,” Applied Physics Letters, 102 (2013) 163.
[50] Y.M. Tseng, R.Y. Gu, and S.L. Cheng, “Design and fabrication of vertically aligned single-crystalline Si nanotube arrays and their enhanced broadband absorption properties,” Applied Surface Science, 508 (2020) 145.
[51] X. Badel, “Electrochemically etched pore arrays in silicon for X-ray imaging detectors.,” (2005).
[52] D. Kondrashova, A. Lauerer, D. Mehlhorn, H. Jobic, A. Feldhoff, M. Thommes, D. Chakraborty, C. Gommes, J. Zecevic, P. de Jongh, A. Bunde, J. Karger, and R. Valiullin, “Scale-dependent diffusion anisotropy in nanoporous silicon,” Scientific Reports, 7 (2017) 402.
[53] A. Vyatkin, V. Starkov, V. Tzeitlin, H. Presting, J. Konle, and U. Ko¨nig, “Random and ordered macropore formation in p-type silicon.,” Journal of The Electrochemical Society, 149 (2002) 70-76.
[54] V. Lehmann, “The physics of macropore formation in low doped n-type silicon,” Journal of The Electrochemical Society, 140 (1993) 2836.
[55] A.B. Dheyab, L.A. Wali, A.M. Alwan, and I.A. Naseef, “Perfect incorporation of AuNPs on the p-n(+) porous silicon for highly-efficient solar cells,” Optik, 198 (2019) 163317.
[56] M.S. Choi, H.G. Na, A. Mirzaei, J.H. Bang, W. Oum, S. Han, S.-W. Choi, M. Kim, C. Jin, S.S. Kim, and H.W. Kim, “Room-temperature NO2 sensor based on electrochemically etched porous silicon,” Journal of Alloys and Compounds, 811 (2019) 151975.
[57] M. Škrabi´, M. Kosovi´c, M. Goti´, L. Mikac, M. Ivanda, and O. Gamulin, “Near-Infrared surface-enhanced Raman scattering on silver-coated porous silicon photonic crystals,” Nanomaterials, 9 (2019) 421.
[58] H.A. Hadi, R.A. Ismail, and N.J. Almashhadani, “Preparation and characteristics study of polystyrene porous silicon photodetector prepared by electrochemical etching,” Journal of Inorganic and Organometallic Polymers and Materials, 29 (2019) 1100–1110.
[59] V. Lehmann, “Formation mechanism and properties of electrochemically etched trenches in n-type silicon,” Journal of The Electrochemical Society, 137 (1990) 653.
[60] M.I.J. Beale, J.D. Benjamin, M.J. Uren, N.G. Chew, and A. Cullis, “An experimental and theoretical study of the formation and microstructure of porous silicon,” Journal of Crystal Growth, 73 (1985) 622—636.
[61] M.I.J. Beale, N.G. Chew, M.J. Uren, A.G. Cullis, and J.D. Benjamin, “Microstructure and formation mechanism of porous silicon,” Applied Physics Letters, 46 (1985) 86-88.
[62] X.G. Zhang, “Porous silicon formation and electropolishing of silicon by anodic polarization in HF solution,” Journal of The Electrochemical Society, 136 (1989) 1561.
[63] R.L. Smith and S.D. Collins, “Porous silicon formation mechanisms,” Journal of Applied Physics, 71 (1992) R1-R22.
[64] X.G. Zhang, “Mechanism of pore formation on n-type silicon,” Journal of The Electrochemical Society, 138 (1991) 3750.
[65] R.L. Smith, S.-F. Chuang, and S.D. Collins, “A theoretical model of the formation morphologies of porous silicon,” Journal of Electronic Materials, 17 (1988) 534-541.
[66] H. Okayama, K. Fukami, R. Plugaru, T. Sakka, and Y.H. Ogata, “Ordering and disordering of macropores formed in prepatterned p-type silicon,” Journal of The Electrochemical Society, 157 (2010) 54-59.
[67] C.M. Zhou and D. Gall, “Surface patterning by nanosphere lithography for layer growth with ordered pores,” Thin Solid Films, 516 (2007) 433-437.
[68] H. Asoh, K. Uchibori, and S. Ono, “Anisotropic chemical etching of silicon through anodic oxide films formed on silicon coated with microspheres,” Semiconductor Science and Technology, 26 (2011) 102001.
[69] S.L. Cheng, Y.H. Lin, S.W. Lee, T. Lee, H. Chen, J.C. Hu, and L.T. Chen, “Fabrication of size-tunable, periodic Si nanohole arrays by plasma modified nanosphere lithography and anisotropic wet etching,” Applied Surface Science, 263 (2012) 430-435.
[70] S.H. Baek, B.Y. Noh, I.K. Park, and J.H. Kim, “Fabrication and characterization of silicon wire solar cells having ZnO nanorod antireflection coating on Al-doped ZnO seed layer,” Nanoscale Research Letters, 7 (2012) 29.
[71] N. Guo, JinquanWei, Q. Shu, Y. Jia, Z. Li, K. Zhang, H. Zhu, KunlinWang, S. Song, Y. Xu, and DehaiWu, “Fabrication of silicon microwire arrays for photovoltaic applications,” Applied Physics A, 102 (2011) 109–114.
[72] D.R. Kim, C.H. Lee, P.M. Rao, I.S. Cho, and X. Zheng, “Hybrid Si microwire and planar solar cells: passivation and characterization,” Nano Letters, 11 (2011) 2704-2708.
[73] K. Seo, Y.J. Yu, P. Duane, W. Zhu, H. Park, M. Wober, and K.B. Crozier, “Si microwire solar cells improved efficiency with a conformal SiO2 layer,” American Chemical Society, 7 (2013) 5539–5545.
[74] H.D. Um, N. Kim, K. Lee, I. Hwang, J. Hoon Seo, Y.J. Yu, P. Duane, M. Wober, and K. Seo, “Versatile control of metal-assisted chemical etching for vertical silicon microwire arrays and their photovoltaic applications,” Scientific Reports, 5 (2016) 11277.
[75] J. Tang, H.T. Wang, D.H. Lee, M. Fardy, Z. Huo, T.P. Russell, and P. Yang, “Holey silicon as an efficient thermoelectric material,” Nano Letters, 10 (2010) 4279-4283.
[76] C.W. Roske, E.J. Popczun, B. Seger, C.G. Read, T. Pedersen, O. Hansen, P.C. Vesborg, B.S. Brunschwig, R.E. Schaak, I. Chorkendorff, H.B. Gray, and N.S. Lewis, “Comparison of the performance of CoP-Coated and Pt-Coated radial Junction n(+)p-Silicon microwire-array photocathodes for the sunlight-driven reduction of water to H2(g),” The Journal of Physical Chemistry Letters, 6 (2015) 1679-1683.
[77] J. Tang, B. Kong, Y. Wang, M. Xu, Y. Wang, H. Wu, and G. Zheng, “Photoelectrochemical detection of glutathione by IrO2-hemin-TiO2 nanowire arrays,” Nano Letters, 13 (2013) 5350-5354.
[78] S.C. Hsu, C.L. Hsin, C.W. Huang, S.Y. Yu, C.W. Wang, C.M. Lu, K.C. Lu, and W.W. Wu, “Single-crystalline Ge nanowires and Cu3Ge/Ge nano-heterostructures,” CrystEngCom, 14 (2012) 4570.
[79] H.P. Yoon, Y.A. Yuwen, C.E. Kendrick, G.D. Barber, N.J. Podraza, J.M. Redwing, T.E. Mallouk, C.R. Wronski, and T.S. Mayer, “Enhanced conversion efficiencies for pillar array solar cells fabricated from crystalline silicon with short minority carrier diffusion lengths,” Applied Physics Letters, 96 (2010) 213503.
[80] K.T. Park, Z. Guo, H.D. Um, J.Y. Jung, J.M. Yang, S.K. Lim, Y.S. Kim, and J.H. Lee, “Optical properties of Si microwires combined with nanoneedles for flexible thin film photovoltaics,” The Optical Society, 19 (2010) 135-263.
[81] L. Li and C.P. Wong, “Formation of high-aspect-ratio through silicon vias (TSVs) with a broad range of diameter by uniform metal-assisted chemical etching,” IEEE Xplore, 7 (2016) 1746-1751.
[82] P. Lianto, S. Yu, J. Wu, C.V. Thompson, and W.K. Choi, “Vertical etching with isolated catalysts in metal-assisted chemical etching of silicon,” Nanoscale, 4 (2012) 7532-7539.
[83] Y. Wang, V. Schmidt, S. Senz, and U. Gosele, “Epitaxial growth of silicon nanowires using an aluminium catalyst,” Nature Nanotechnology, 1 (2006) 186-189.
[84] W.K. Choi, T.H. Liew, M.K. Dawood, H.I. Smith, C.V. Thompson, and M.H. Hong, “Synthesis of silicon nanowires and nanofin arrays using interference lithography and catalytic etching,” Nano Letters, 8 (2008) 3799-3802.
[85] Z. Huang, N. Geyer, P. Werner, J. de Boor, and U. Gosele, “Metal-assisted chemical etching of silicon: a review,” Advanced Materials, 23 (2011) 285-308.
[86] J. de Boor, N. Geyer, J.V. Wittemann, U. Gosele, and V. Schmidt, “Sub-100 nm silicon nanowires by laser interference lithography and metal-assisted etching,” Nanotechnology, 21 (2010) 095302.
[87] K. Peng, Y. Xu, Y. Wu, Y. Yan, S.T. Lee, and J. Zhu, “Aligned single-crystalline Si nanowire arrays for photovoltaic applications,” Small, 1 (2005) 1062-1067.
[88] K. Peng, J. Jie, W. Zhang, and S.-T. Lee, “Silicon nanowires for rechargeable lithium-ion battery anodes,” Applied Physics Letters, 93 (2008) 033105.
[89] B. Zhang, H. Wang, L. Lu, K. Ai, G. Zhang, and X. Cheng, “Large-area silver-coated silicon nanowire arrays for molecular sensing using surface-enhanced Raman spectroscopy,” Advanced Functional Materials, 18 (2008) 2348-2355.
[90] J. Kim, H. Rhu, and W. Lee, “A continuous process for Si nanowires with prescribed lengths,” Journal of Materials Chemistry, 21 (2011) 15889.
[91] X. Jiao, Y. Chao, L. Wu, and A. Yao, “Metal-assisted chemical etching of silicon 3D nanostructure using direct-alternating electric field,” Journal of Materials Science: Materials in Electronics, 27 (2015) 1881-1887.
[92] C.T. Dao, C.T. Anh, and L. Ngan, “Vertical-aligned silicon nanowire arrays with strong photoluminescence fabricated by metal-assisted electrochemical etching,” Journal of Nanoelectronics and Optoelectronics, 15 (2020) 127-135.
[93] R. Ning, Y. Jiang, Y. Zeng, H. Gong, J. Zhao, J. Weisse, X. Shi, T.M. Gill, and X. Zheng, “On-demand production of hydrogen by reacting porous silicon nanowires with water,” Nano Research, 13 (2020) 1459–1464.
[94] N. Verplanck, Y. Coffinier, V. Thomy, and R. Boukherroub, “Wettability switching techniques on superhydrophobic surfaces,” Nanoscale Research Letters, 2 (2007) 577-596.
[95] M. Callies and D. Quéré, “On water repellency,” Soft Matter, 1 (2005) 55.
[96] K. MA, T.S. CHUNG, and R.J. GOOD, “Surface energy of thermotropic liquid crystalline polyesters and polyesteramide,” Journal of Polymer Science, 36 (1998) 2327–2337.
[97] R.H. Fowle, F.R.S., and D.L. Nordheim, “Electron emission in intense electric fields,” Proceedings of the Royal Society of London, 119 (1928) 173-181.
[98] C.H. Kuo, J.M. Wu, and S.J. Lin, “Room temperature-synthesized vertically aligned InSb nanowires electrical transport and field emission characteristics,” Nanoscale Research Letters, 8 (2013) 69.
[99] Y. Shen, N. Xu, P. Ye, Y. Zhang, F. Liu, J. Chen, J. She, and S. Deng, “An analytical modeling of field electron emission for a vertical wedged ordered nanostructure,” Advanced Electronic Materials, 3 (2017) 1700295.
[100] J.J. Niu, J.N. Wang, and N.S. Xu, “Field emission property of aligned and random SiC nanowires arrays synthesized by a simple vapor–solid reaction,” Solid State Sciences, 10 (2008) 618-621.
[101] J. Wu, L. Chen, S. Li, C. Du, Q. Zhang, C. Zheng, J. Xu, and K. Song, “Improved field emission performances for graphene/ZnO nanowires/graphene sandwich composites,” Materials Letters, 213 (2018) 391-393. |