參考文獻 |
1 Conway, B. E., Electrochemical supercapacitors: scientific fundamentals and technological applications., Springer Science & Business Media, 2013.
2 D. P. Dubal, N. R. Chodankar, D. H. Kim, & P. Gomez-Romero, “Towards flexible solid-state supercapacitors for smart and wearable electronics.”, Chem. Soc. Rev.,
Vol 47, pp. 2065-2129, 2018.
3 P. Simon, & Y. Gogotsi, “Materials for electrochemical capacitors.”, J NANOSCI NANOTECHNO, Vol 7, pp. 320-329, 2009.
4 B. E. Conway, “Transition from “supercapacitor” to “battery” behavior in electrochemical energy storage”, J. Electrochem. Soc., Vol 138, pp. 1539-1548, 1991.
5 A. Balakrishnan, & K. Subramanian, Nanostructured ceramic oxides for supercapacitor application., CRC Press, 2014.
6 Wikipedia contributor. Supercapacitor. 取自https://en.wikipedia. org/wiki /Super capacitor。
7 S. Guo, F. Wang, H. Chen, H. Ren, R. Wang, & X. Pan, “Preparation and performance of polyvinyl alcohol-based activated carbon as electrode material in both aqueous and organic electrolytes”, J SOLID STATE ELECTR, Vol 16, pp. 3355-3362, 2012.
8 A. Borenstein, O. Hanna, R. Attias, S. Luski, T. Brousse & D. Aurbach, “Carbon-based composite materials for supercapacitor electrodes: a review”, J. Mater. Chem. A, Vol 5, pp. 12653, 2017.
9 V. Augustyn, P. Simon, & Dunn, B. “Pseudocapacitive oxide materials for high-rate electrochemical energy storage.” Energy Environ. Sci. Vol 7, pp.1597, 2014.
10 C. C. Hu, K. H. Chang, M. C. Lin, & Y. T. Wu, “Design and Tailoring of the Nanotubular Arrayed Architecture of Hydrous RuO2 for Next Generation Supercapacitors.”, Nano Letters, Vol 6, pp. 2690–2695, 2006.
11 J. Zhang, D. Jiang, B. Chen, J. Zhu, L. Jiang, & H. Fang, “Preparation and Electrochemistry of Hydrous Ruthenium Oxide/Active Carbon Electrode Materials for Supercapacitor.”, J ELECTROCHEM SOC, Vol 148, pp. 1362-1367, 2001.
12 R. S. Kate, S. A. Khalate, & R. J. Deokate, “Overview of nanostructured metal oxides and pure nickel oxide (NiO) electrodes for supercapacitors: A review”, J ALLOY COMPD, Vol 734, pp. 89-111, 2018.
13 J. G. Wang, F. Kang, & ,B. Wei, “Engineering of MnO2-based nanocomposites for high-performance supercapacitors”, PROG MATER SCI, Vol 74, pp. 51-124, October 2015.
14 B. K. Kim, S. Sy, A. Yu, & J. Zhang, “Electrochemical Supercapacitors for Energy Storage and Conversion”, John Wiley & Sons, pp.1-25, July 2015.
15 X. Pu, L. Li, M. Liu, C. Jiang, C. Du, Z. Zhao, W. Hu, & Z. L. Wang, “ Wearable Self-Charging Power Textile Based on Flexible Yarn Supercapacitors and Fabric Nanogenerators.” Adv. Mater., Vol 28, pp. 98–105, 2016.
16 W. Zeng, L. Shu, Q. Li, S. Chen, F. Wang, & X. M. Tao, “Fiber‐Based Wearable Electronics: A Review of Materials, Fabrication, Devices, and Applications.” Adv. Mater., Vol 26, pp. 5310–5336, 2014.
17 環保署,循環經濟-資源循環網,取自https://smmdb.epa.gov.tw/circulation/ index。
18 A. Divyashree, S. A. B. A. Manaf, S. Yallappa, K. Chaitra, N. Kathyayini, & G. Hegde, “Low cost, high performance supercapacitor electrode using coconut wastes: eco-friendly approach.” J. Energy Chem. Vol 25, pp. 880-887, 2016.
19 L. Wang, G. Mu, C. Tian, L. Sun, W. Zhou, P. Yu, J. Yin, & H. Fu, “Porous graphitic carbon nanosheets derived from cornstalk biomass for advanced supercapacitors.”, ChemSusChem, Vol 6, pp. 880-889, 2013.
20 S. Bhoyate, C. K. Ranaweera, C. Zhang, T. Morey, M. Hyatt, P. K. Kahol, M. Ghimire, S. R. Mishra, & R. K. Gupta, “Eco-Friendly and High Performance Supercapacitors for Elevated Temperature Applications Using Recycled Tea Leaves.”, Global challenges, Vol 1, pp. 1-12, 2017.
21 S. Lv, F. Fu, S. Wang, J. Huang, & L. Hu, “Eco-friendly wood-based solid-state flexible supercapacitors from wood transverse section slice and reduced graphene oxide.” ELECTRON MATER LETT, Vol 11, pp. 633-642, 2015.
22 B. Liu, L. Zhang, P. Qi, M. Zhu, G. Wang, Y. Ma, X. Guo, H. Chen, B. Zhang, Z. Zhao, B. Dai, & Feng Yu, “Nitrogen-Doped Banana Peel–Derived Porous Carbon Foam as Binder-Free Electrode for Supercapacitors.” J. Nanomater. Vol 6, pp. 18-28, 2016.
23 Y. S. Yun, M. H. Park, S. J. Hong, M. E. Lee, Y. W. Park, & H. J. Jin, “Hierarchically porous carbon nanosheets from waste coffee grounds for supercapacitors.” ACS APPL MATER INTER, Vol 7, pp. 3684-3690, 2015.
24 X.Tian, C.Yang, L. Si, & G. Si, “Flexible self-assembled membrane electrodes based on eco-friendly bamboo fibers for supercapacitors.” J. Mater. Sci.: Mater. Electron. Vol 28, pp.15338-15344, 2017.
25 I. Shown, A. Ganguly, L. C. Chen & K. H. Chen. “Conducting polymer-based flexible supercapacitor.” ENERGY SCI ENG, Vol 3, pp. 2–26, 2015.
26 Y. Wang, C. Zhu, R. Pfattner, H. Yan, L. Jin, S. Chen, F. Molina-Lopez, F. Lissel, J. Liu, N. I. Rabiah, Z. Chen, J. W. Chung, C. Linder, M. F. Toney, B. Murmann & Z. Bao, “A highly stretchable, transparent, and conductive polymer.” Science Advances, Vol 3, pp. 1-10, March 2017.
27 T. Horii, Y. Li, Y. Mori, & H. Okuzaki, “Correlation between the hierarchical structure and electrical conductivity of PEDOT:PSS.”, Polym. J. Vol 47, pp. 695 2015.
28 F. Barbier, G. Duc, & M. Petit-Ramel, “Adsorption of lead and cadmium ions from aqueous solution to the montmorillonite/water interface.” COLLOID SURFACE A, Vol 166, pp. 153-159, 2000.
29 R. A. Barrer, & D. MacLeod, “Activation of montmorillonite by ion exchange
and sorption complexes of tetra-alkyl ammonium montmorillonites.”, J. Chem.Soc. Faraday Trans., Vol 51, pp.1290-1300, 1955.
30 J. Adams, “Synthetic organic chemistry using pillared, cation-exchanged and acid-treated montmorillonite catalysts—A review.”, Applied Clay Science, Vol 2, pp. 309-342, 1987.
31 J. Mouzon, I. U. Bhuiyan, & J. Hedlund, “The structure of montmorillonite gels revealed by sequential cryo-XHR-SEM imaging.”, J. Colloid Interface Sci., Vol 465, pp. 58-66, 2016.
32 國家同步輻射中心,什麼是同步加速器光源?,取自https://www. nsrrc.org.tw/chinese/lightsource.aspx。
33 S. R. S. Kumar, N. Kurra & H. N. Alshareef. “Enhanced high temperature thermoelectric response of sulphuric acid treated conducting polymer thin films.”, J. Mater. Chem. C, Vol 4, pp. 215-221, 2016.
34 V. K. A. Muniraj, P. K. Dwivedi, P. S. Tamhane, S. Szunerits, R. Boukherroub, & M. V. Shelke, “High-Energy Flexible Supercapacitor Synergistic Effects of Polyhydroquinone and RuO2·xH2O with Microsized, Few-Layered, Self-Supportive Exfoliated-Graphite Sheets”, ACS Appl. Mater. Interfaces, Vol 11, pp.18349−18360, 2019.
35 Y. Liu, B. Weng, J. M. Razal, Q. Xu, C. Zhao, Y. Hou, S. Seyedin, R. Jalili, G. G. Wallace & J. Chen, “High-Performance Flexible All-Solid-State Supercapacitor from Large Free-Standing Graphene-PEDOT/PSS Films”, Sci. Rep, Vol 5, 17045, 2015.
36 K. Qi, R. Hou, S. Zaman, Y. Qiu, B. Y. Xia, & H. Duan, “Construction of Metal−Organic Framework/Conductive Polymer Hybrid for All-Solid-State Fabric Supercapacitor”, ACS Appl. Mater. Interfaces, Vol 10, pp. 18021–18028, 2018.
37 J.J. Alcaraz-Espinoza, H.P. de Oliveira, “Flexible supercapacitors based on a ternary composite of polyaniline/polypyrrole/graphite on gold coated sandpaper”, Electrochimica Acta, Vol 274, pp. 200-207, June 2018.
38 X. Zang, X. Li, M. Zhu, X. Li, Z. Zhen, Y. He, K. Wang, J. Wei, F. Kang & H. Zhu, “Graphene/polyaniline woven fabric composite films as flexible supercapacitor electrodes.”, Nanoscale, Vol 7, pp. 7318-7322, 2015.
39 C. J. Zhang, T. M. Higgins, S. H. Park, S. E. O′Brien, D. Long, J. N. Coleman & V. Nicolosi, “Highly Flexible and Transparent Solid-State Supercapacitors Based on RuO2/PEDOT:PSS Conductive Ultrathin Films”, Nano Energy, Vol 28, pp. 495−505, 2016.
40 K. H. Chang, C. C. Hu, & C. Y. Chou, “Textural and Capacitive Characteristics of Hydrothermally Derived RuO2âxH2O Nanocrystallites: Independent Control of Crystal Size and Water Content.”, Chem. Mater., Vol 19, pp. 2112-2119, 2007.
41 P. P. Sarmah, & D. K. Dutta, “Chemoselective reduction of a nitro group through transfer hydrogenation catalysed by Ru0-nanoparticles stabilized on modified Montmorillonite clay.”, Curr. Green Chem., Vol 14, pp. 1086–1093, 2012.
42 X. Yan, H. Liu, & K. Y. Liew, “Size control of polymer-stabilized ruthenium nanoparticles by polyol reduction.”, J. Mater. Chem., Vol 11, pp. 3387–3391, 2001. |