博碩士論文 107324050 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:34 、訪客IP:18.119.159.150
姓名 蔡盈榛(Ying-Chen Tsai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 超聲波輔助水解共沉澱法製備β-Ni(OH)2 應用於鎳基電池
(Preparation of β-Ni(OH)2 electrode using ultrasonic-assisted hydrolysis co-precipitation method for rechargeable Ni-based batteries)
相關論文
★ 硼氫化物-乙二醇醚類溶劑電解液應用於鎂複合電池正極之性質研究★ 離子液體與有機碳酸酯之混合型電解液應用於高電壓LiNi0.5Mn1.5O4正極材料
★ SiO2@AIZS奈米殼層結構合成及其光催化產氫研究★ 利用旋轉塗佈法製備固態電解質應用於鋰離子電池
★ 以不同流場電解液搭配發泡銅網作為鋅空氣電池負極集電網之電化學性質★ 鈰摻雜之固態電解質Li7La3Zr2O12應用於鋰離子電池
★ 奈米結構之Au/MnO2複合陰極觸媒材料★ 使用接枝到表面法製備聚乙二醇高分子刷於自組裝單分子膜改質之矽基材
★ 超音波輔助化學水浴法製備 AgInS2 薄膜之電化學阻抗頻譜分析★ 硫化錫粉體作為鋰離子電池陽極活性材料的效能與穩定性研究
★ IMPS於Ag-In-S半導體薄膜之分析與應用★ LiFePO4和LiNi0.5Mn1.5O4於離子液體電解液中的鋰離子電池電化學特性
★ 微波水熱法製備金屬硫化物粉體及其光化學產氫研究★ 硫化錫-硫化銻作為鋰離子電池負極材料之研究
★ 溶劑熱法製備Cu-In-Zn-S薄膜及其光電化學性質★ 電化學分解水之電極材料製備與效率探討
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-18以後開放)
摘要(中) 本研究於超音波環境下以水解共沉澱法製備β-Ni(OH)¬2正極材料,探討不同前驅物、鹼性沉澱環境、摻雜元素對於材料性質及電化學分析的影響。研究分為三個部分,第一部分探討NiCH¬¬3¬COOH、NiNO¬3、NiSO¬¬4、NiCl¬¬¬2四種前驅物於不同沉澱環境下(pH 8-pH 12)製備氫氧化鎳的材料分析,由XRD證實高於pH 10環境下¬¬得到純相且發現結晶強度隨著環境越趨鹼性,結晶性越好,以NiCH3COOH前驅物製備時有最小晶粒;而BET比表面積結果顯示NiCH¬3¬COOH前驅物製備氫氧化鎳具有高比表面積131.54 m2/g、較大的中孔體積93.04 Å、孔洞分布均勻。
第二部分為四種前驅物於pH 12環境下製備氫氧化鎳電極於6 M KOH (pH 14)電解液中進行電化學分析,當晶粒越小時充放電循環穩定性增加,由循環伏安法測得NiCH¬3¬COOH前驅物電化學可逆性較好且有最佳的充電效率;電解液可有效地進入電極內部,於高比表面積中進行反應,有效使電化學反應增加,於300 mA/g下充放電,其電容值達246 mAh/g;經抗腐蝕測試結果發現有最低腐蝕電流181.52 μA/cm2¬¬,於強鹼電解液具高抗腐蝕能力。
第三部分沿用前兩部分最佳參數於pH 12環境下利用NiCH¬3¬COOH前驅物製備氫氧化鎳,並摻雜錳元素提升比表面積及電化學表現。隨著錳含量增加,XRD繞射峰(001)面的β-Ni(OH)¬2¬¬特徵峰值明顯增強並有位移趨勢;由循環伏安法證實0.05 Mn有最佳的充電性能及穩定的可逆性,添加過量錳含量雖然能夠抑制氧氣產生,提升充電效率,但氧化還原的可逆穩定性較差;循環充放電測試於0.05 Mn有最高電容值258 mAh/g,由BET結果顯示0.05 Mn摻雜比表面積高達158.8 m2/g,使電解液擴散活材面積上升,證實添加錳可以提升電化學面積,增加電容值;腐蝕測試大幅降低腐蝕電流值為24.84¬¬ μA/cm2¬¬,進行長時間充放電時,極片結構不容易損壞。由以上實驗結果說明於pH 12鹼性環境下以NiCH¬3¬COOH作為前驅物並摻雜0.05 Mn製備氫氧化鎳極片改質作為鋅鎳電池之正極,有效提高電化學效能,於儲能電池上的應用有相當大的發展。
摘要(英) β-Ni(OH)2 as positive electrode materials were prepared by using the ultrasonic hydrolysis co-precipitating method. Different precursors, alkaline precipitation environment, and doping element on the material properties and electrochemical characteristics were discussed. The materials prepared by nickel acetate, nickel nitrate, nickel sulfate, and nickel chloride under different pH values (pH 8 to pH 12) .The BET results show that nickel hydroxide prepared from nickel acetate precursor has a high specific surface area 131.54 m2/g, a large mesopore volume 93.04 Å, uniform pore distribution .
The electrochemical properties of various nickel hydroxide electrode were investigated in 6 M KOH electrolyte. Nickel acetate precursor exhibited a good electrochemical reversibility and an excellent rechargeable efficiency; the electrolyte can effectively enter the interior of the electrode and react with high specific surface area, increasing electrochemical reaction, and capacitance value reaches 246 mAh/g at 300 mA/g; The corrosion test results showed that nickel acetate precursor electrode has the lowest corrosion current of 121.34 μA/cm2, which has high corrosion resistance in strong alkaline electrolyte.
We then prepared nickel hydroxide under pH 12 using nickel acetate as precursor, and doped with manganese to increase the specific surface area thus improve the electrochemical performance. As the level of manganese content increases, the characteristic peak of β-Ni(OH)2 on the (001) surface of the XRD diffraction peak enhanced significantly and shifted to a high angle ; Cyclic voltammetry showed 0.05 Mn possessed the best rechargeable performance and stability . The specific capacitance reaches 258 mAh/g. BET results show the specific surface area is as high as 158.8 m2/g, which increases the electrochemical area, the corrosion test greatly reduces the corrosion current, meaning structure is not easy to damage when charging and discharging.
Above experimental results show nickel acetate as the precursor and 0.05 Mn doped nickel hydroxide prepared at pH 12 is used as the positive electrode of the zinc-nickel battery, which effective improves the electrochemical performance and them applying to energy storage rechargeable battery.
關鍵字(中) ★ 氫氧化鎳
★ 摻雜元素
★ 高比表面積
關鍵字(英) ★ β-Ni(OH)2
★ co-precipitating method
★ nickel acetate
論文目次 目錄
摘要 i
ABSTRACT iii
誌謝 v
目錄 vi
圖目錄 x
表目錄 xv
第一章、緒論 1
1-1 前言 1
1-2 研究動機 4
第二章、文獻回顧 6
2-1 鋅鎳電池簡介 6
2-1-1 鋅鎳液流電池的發展 7
2-1-2 鋅鎳電池的工作原理與傳導機制 9
2-2 氫氧化鎳正極材料發展與簡介 12
2-2-1 氫氧化鎳的結構與反應機制 13
2-2-2氫氧化鎳物理性質及分析特性 16
2-2-3 氫氧化鎳合成方法 22
2-3 氫氧化鎳正極改良之策略 29
2-3-1 顆粒大小與晶粒結構對於電性的探討 29
2-3-2 元素摻雜促進電性提升之影響 34
2-3-3 添加劑改善正極材料目前困境 38
2-4 尿素水解沉澱法簡介 44
2-5 氫氧化鎳孔洞結構介紹 47
第三章、實驗方法與步驟 49
3-1 實驗藥品與器材 49
3-1-1 實驗藥品 49
3-1-2 實驗儀器與器材 51
3-2 實驗流程與架構 52
3-2-1 流程示意圖 52
3-2-2 不同前驅物之β-Ni(OH)2粉末製備 53
3-2-3 摻雜錳元素之β-Ni(OH)2 粉末製備 56
3-2-4發泡鎳網基材前處理 57
3-2-5 正極材料製備 57
3-2-6 電化學測試裝置 58
3-2-7 電解液流場系統 58
3-3 材料鑑定分析 59
3-3-1 X光繞射儀分析 (X-ray Diffraction, XRD) 59
3-3-2 場發射掃描式電子顯微鏡 (Field Emission Scanning Electron Microscope, FE-SEM) 59
3-3-3 拉曼光譜儀 (Raman Spectrometer) 59
3-3-4傅立葉轉換紅外線光譜儀 (Fourier Transform Infrared Spectroscopy, FTIR) 60
3-3-5 動態光散射粒徑分析儀 (Dynamic Light Scattering, DLS) 60
3-3-6 氮氣吸附孔隙儀 61
3-3-7 感應耦合電漿質譜分析儀 ( Inductively coupled plasma-mass spectrometer, ICP-MS) 61
3-3-8 XPS光電子能譜儀 ( Electron Spectroscopy for Chemical Analysis, XPS) 61
3-4 電化學分析 62
3-4-1 循環伏安法 (Cyclic voltammetry, CV) 62
3-4-2 連續循環充放電性測試 (Charge and discharge test) 62
3-4-3 抗腐蝕性測試 ( Corrosion test – Tafel ) 62
第四章、結果與討論 63
4-1 前導 63
4-2 不同前驅物於不同酸鹼值下製備β-Ni(OH)2粉末之材料分析 64
4-2-1 X光繞射分析 65
4-2-2拉曼光譜分析 68
4-2-3傅立葉轉換紅外線光譜分析 69
4-2-4 DLS粒徑大小與SEM表面形貌分析 71
4-2-5 氫氧化鎳孔洞結構分析 79
4-3 不同前驅液於不同酸鹼值製備β-Ni(OH)2電極之電化學分析 82
4-3-1 循環伏安法 82
4-3-2 循環充放電測試 86
4-3-3 抗腐蝕性測試 91
4-4 β-Ni(OH)2 粉末改質摻雜錳之結構性質與電化學探討 93
4-4-1 X光繞射結構分析 94
4-4-2 XPS表面價態元素分析 97
4-4-3 ICP元素定量與EDS定性分析 98
4-4-4 錳摻雜循環伏安法 99
4-4-5 錳摻雜循環充放電測試 101
4-4-6 抗腐蝕性測試 104
4-4-7 循環壽命測試 107
第五章、結論與未來展望 112
參考文獻 114
附錄 121
參考文獻 1. Dunn, B., H. Kamath, and J.-M. Tarascon, Electrical Energy Storage for the Grid: A Battery of Choices. Science, 2011. 334(6058): p. 928.
2. Cheng, Y., et al., A high power density single flow zinc–nickel battery with three-dimensional porous negative electrode. Journal of Power Sources, 2013. 241: p. 196-202.
3. Cheng, J., et al., Preliminary study of single flow zinc–nickel battery. Electrochemistry Communications, 2007. 9(11): p. 2639-2642.
4. Kucera, G., H.G. Plust, and C. Schneider, Nickel-Zinc Storage Batteries as Energy Sources for Electric Vehicles. 1975, SAE International.
5. Parker, J.F., et al., Rechargeable nickel–3D zinc batteries: An energy-dense, safer alternative to lithium-ion. Science, 2017. 356(6336): p. 415.
6. Ito, Y., et al., Zinc morphology in zinc–nickel flow assisted batteries and impact on performance. Journal of Power Sources, 2011. 196(4): p. 2340-2345.
7. Thaller, L.H. Electrically rechargeable redox flow cells. in 9th Intersociety Energy Conversion Engineering Conference. 1974.
8. Sukkar, T. and M. Skyllas-Kazacos, Water transfer behaviour across cation exchange membranes in the vanadium redox battery. Journal of Membrane Science, 2003. 222(1): p. 235-247.
9. Pletcher, D. and R. Wills, A novel flow battery—A lead acid battery based on an electrolyte with soluble lead(II): III. The influence of conditions on battery performance. Journal of Power Sources, 2005. 149: p. 96-102.
10. Cheng, Y., et al., Performance and potential problems of high power density zinc–nickel single flow batteries. RSC Advances, 2015. 5(3): p. 1772-1776.
11. Im, Y., et al., Inhibition of Zn dendrite growth using NixZn(1-x)O anodic material during a redox cycling test in Zn/Ni battery. Solid State Ionics, 2016. 295: p. 13-24.
12. Geng, M. and D.O. Northwood, Development of advanced rechargeable Ni/MH and Ni/Zn batteries. International Journal of Hydrogen Energy, 2003. 28(6): p. 633-636.
13. Oliva, P., et al., Review of the structure and the electrochemistry of nickel hydroxides and oxy-hydroxides. Journal of Power Sources, 1982. 8: p. 229.
14. Hauel, A.P., The Cadmium‐Nickel Storage Battery. Transactions of The Electrochemical Society, 1939. 76(1): p. 435-452.
15. Hall, D.S., et al., Nickel hydroxides and related materials: a review of their structures, synthesis and properties. Proceedings of the Royal Society A: Mathematical, Physical and Engineering Sciences, 2015. 471(2174): p. 20140792.
16. Edison, T.A., Reversible galvanic battery. 1902, Google Patents.
17. Sakamoto, Y., et al., Chemical Insights from Theoretical Electronic States in Nickel Hydroxide and Monolayer Surface Model. The Journal of Physical Chemistry C, 2017. 121(44): p. 24603-24611.
18. Young, K.-H., et al., Fabrications of high-capacity alpha-Ni (OH)2. Batteries, 2017. 3(1): p. 6.
19. Bode, H., K. Dehmelt, and J. Witte, Zur kenntnis der nickelhydroxidelektrode—I. Über das nickel (II)-hydroxidhydrat. Electrochimica Acta, 1966. 11(8): p. 1079-IN1.
20. Ran, J., J. Yu, and M. Jaroniec, Ni(OH)2 modified CdS nanorods for highly efficient visible-light-driven photocatalytic H2 generation. Green Chemistry, 2011. 13(10): p. 2708-2713.
21. Kumar, V.G., et al., On the performance of stabilized α-nickel hydroxide as a nickel-positive electrode in alkaline storage batteries. Journal of power sources, 1995. 56(1): p. 111-114.
22. McEwen, R., Crystallographic studies on nickel hydroxide and the higher nickel oxides. The Journal of Physical Chemistry, 1971. 75(12): p. 1782-1789.
23. Barnard, R., C. Randell, and F. Tye, Studies concerning the ageing of α and β-Ni(OH)2 in relation to nickel–cadmium cells. Power Sources, 1981. 8: p. 401-425.
24. Le Bihan, S., J. Guenot, and M. Figlarz, Sur la cristallogénèse de l′hydroxyde de nickel Ni(OH)2. CR de l’Académie des Science: Paris, 1970. 270: p. 2131-2133.
25. Bernard, M., et al., Structural defects and electrochemical reactivity of β-Ni (OH)2. Journal of Power Sources, 1996. 63(2): p. 247-254.
26. Ramesh, T. and P.V. Kamath, The effect of stacking faults on the electrochemical performance of nickel hydroxide electrodes. Materials Research Bulletin, 2008. 43(11): p. 2827-2832.
27. Delmas, C. and C. Tessier, Stacking faults in the structure of nickel hydroxide: a rationale of its high electrochemical activity. Journal of Materials Chemistry, 1997. 7(8): p. 1439-1443.
28. Tessier, C., et al., The structure of Ni(OH)2: from the ideal material to the electrochemically active one. Journal of the Electrochemical Society, 1999. 146(6): p. 2059-2067.
29. Kober, F.P., Infrared spectroscopic investigation of charged nickel hydroxide electrodes. Journal of the Electrochemical Society, 1967. 114(3): p. 215-218.
30. Radha, A., P.V. Kamath, and C. Shivakumara, Order and disorder among the layered double hydroxides: combined Rietveld and DIFFaX approach. Acta Crystallographica Section B: Structural Science, 2007. 63(2): p. 243-250.
31. Zhang, W., et al., Effect of nickel hydroxide composition on the electrochemical performance of spherical Ni(OH)2 positive materials for Ni–MH batteries. International Journal of Hydrogen Energy, 2009. 34(1): p. 473-480.
32. De Oliveira, E. and Y. Hase, Infrared study of magnesium–nickel hydroxide solid solutions. Vibrational spectroscopy, 2003. 31(1): p. 19-24.
33. Huang, J., et al., Effect of Al-doped β-Ni(OH)2 nanosheets on electrochemical behaviors for high performance supercapacitor application. Journal of power sources, 2013. 232: p. 370-375.
34. Hall, D.S., et al., Raman and infrared spectroscopy of α and β phases of thin nickel hydroxide films electrochemically formed on nickel. The Journal of Physical Chemistry A, 2012. 116(25): p. 6771-6784.
35. Liu, L., et al., Co doped α-Ni(OH)2 multiple-dimensional structure electrode material. Electrochimica Acta, 2019. 295: p. 340-346.
36. Watanabe, K.-i., M. Koseki, and N. Kumagai, Effect of cobalt addition to nickel hydroxide as a positive material for rechargeable alkaline batteries. Journal of power sources, 1996. 58(1): p. 23-28.
37. Zhu, Y., et al., Facile preparation of sulfur/nitrogen co-doped graphene coupled with Ni(OH)2 for battery-type electrode with superior electrochemical performance. Journal of Alloys and Compounds, 2019. 810: p. 151932.
38. Wang, Q., et al., Synthesis of a flower-like Co-doped Ni(OH)2 composite for high-performance supercapacitors. RSC Advances, 2015. 5(60): p. 48181-48186.
39. Xie, S., et al., Synthesis of cobalt-doped nickel sulfide nanomaterials with rich edge sites as high-performance supercapacitor electrode materials. Inorganic Chemistry Frontiers, 2018. 5(5): p. 1218-1225.
40. Bao, J., et al., Structure and electrochemical properties of nanometer Cu substituted α-nickel hydroxide. Materials Research Bulletin, 2013. 48(2): p. 422-428.
41. Hu, B., et al., Controllable Synthesis of Zinc‐Substituted α‐and β‐Nickel Hydroxide Nanostructures and Their Collective Intrinsic Properties. Chemistry–A European Journal, 2008. 14(29): p. 8928-8938.
42. Bao, J., et al. Structure and electrochemical performance of Cu and Al codoped nanometer α-nickel hydroxide. in Advanced Materials Research. 2012. Trans Tech Publ.
43. Chen, X., et al., Al and Co co-doped α-Ni (OH)2/graphene hybrid materials with high electrochemical performances for supercapacitors. Electrochimica Acta, 2014. 137: p. 352-358.
44. Li, Y., et al., Effect of interlayer anions on the electrochemical performance of Al-substituted α-type nickel hydroxide electrodes. International Journal of Hydrogen Energy, 2010. 35(6): p. 2539-2545.
45. Qi, J., et al., Effect of crystallinity on the electrochemical performance of nanometer Al-stabilized α-nickel hydroxide. Journal of alloys and compounds, 2008. 462(1-2): p. 164-169.
46. Zhou, F., et al., Coprecipitation Synthesis of NixMn1−x(OH)2 Mixed Hydroxides. Chemistry of Materials, 2010. 22(3): p. 1015-1021.
47. Gomes, A.P., et al., Enhancement of Stability and Specific Charge Capacity of Alpha-Ni(OH)2 by Mn(II) Isomorphic Substitution. Energy Technology, 2019. 7(5): p. 1800980.
48. Zhang, H., et al., Synthesis of Mn-doped α-Ni(OH)2 nanosheets assisted by liquid-phase laser ablation and their electrochemical properties. Physical Chemistry Chemical Physics, 2013. 15(15): p. 5684-5690.
49. Liu, C., et al., Synthesis and electrochemical performance of amorphous nickel hydroxide codoped with Fe 3+ and CO3 2−. Ionics, 2010. 16(3): p. 215-219.
50. Xu, Q., et al., Preparation of Yb-substituted α-Ni(OH)2 and its physicochemical properties. Journal of Alloys and Compounds, 2014. 584: p. 1-6.
51. Hall, D.S., et al., Applications of in Situ Raman Spectroscopy for Identifying Nickel Hydroxide Materials and Surface Layers during Chemical Aging. ACS Applied Materials & Interfaces, 2014. 6(5): p. 3141-3149.
52. Ramesh, T.N. and P.V. Kamath, Synthesis of nickel hydroxide: Effect of precipitation conditions on phase selectivity and structural disorder. Journal of Power Sources, 2006. 156(2): p. 655-661.
53. Faure, C., C. Delmas, and M. Fouassier, Characterization of a turbostratic α-nickel hydroxide quantitatively obtained from an NiSO4 solution. Journal of Power Sources, 1991. 35(3): p. 279-290.
54. Soler-Illia, G.J.d.A.A., et al., Synthesis of Nickel Hydroxide by Homogeneous Alkalinization. Precipitation Mechanism. Chemistry of Materials, 1999. 11(11): p. 3140-3146.
55. Li, J., et al., A facile approach to synthesis coral-like nanoporous β-Ni(OH)2 and its supercapacitor application. Journal of Power Sources, 2013. 243: p. 721-727.
56. Song, Q., et al., Structural characteristics of nickel hydroxide synthesized by a chemical precipitation route under different pH values. Journal of Power Sources, 2002. 112(2): p. 428-434.
57. Wallner, H. and K. Gatterer, Growth of pure Ni(OH)2 single crystals from solution—control of the crystal size. Zeitschrift für anorganische und allgemeine Chemie, 2002. 628(13): p. 2818-2820.
58. Brinker, C.J. and G.W. Scherer, Sol-gel science: the physics and chemistry of sol-gel processing. 2013: Academic press.
59. Xing, W., et al., Synthesis and electrochemical properties of mesoporous nickel oxide. Journal of Power Sources, 2004. 134(2): p. 324-330.
60. Sharma, P.K., M.C.A. Fantini, and A. Gorenstein, Synthesis, characterization and electrochromic properties of NiOxHy thin film prepared by a sol–gel method. Solid State Ionics, 1998. 113-115: p. 457-463.
61. Xiao-yan, G. and D. Jian-cheng, Preparation and electrochemical performance of nano-scale nickel hydroxide with different shapes. Materials Letters, 2007. 61(3): p. 621-625.
62. Hench, L.L. and J.K. West, The sol-gel process. Chemical Reviews, 1990. 90(1): p. 33-72.
63. Tessier, C., et al., Structural and textural evolution of zinc-substituted nickel hydroxide electrode materials upon ageing in KOH and upon redox cycling. Solid State Ionics, 2000. 133(1): p. 11-23.
64. Alberti, G. and U. Costantino, Layered solids and their intercalation chemistry. Comprehensive Supramolecular Chemistry, 1996. 7(1).
65. Godwin, I. and M. Lyons, Enhanced oxygen evolution at hydrous nickel oxide electrodes via electrochemical ageing in alkaline solution. Electrochemistry communications, 2013. 32: p. 39-42.
66. Jeevanandam, P., Y. Koltypin, and A. Gedanken, Synthesis of nanosized α-nickel hydroxide by a sonochemical method. Nano Letters, 2001. 1(5): p. 263-266.
67. Du, H., et al., Facile Synthesis and High Capacitive Performance of 3D Hierarchical Ni(OH)2 Microspheres. Electrochimica Acta, 2016. 196: p. 84-91.
68. Ravi kumar, C.R., et al., Influence of zinc additive and pH on the electrochemical activities of β-nickel hydroxide materials and its applications in secondary batteries. Journal of Energy Storage, 2017. 9: p. 12-24.
69. Kamath, P.V., Stabilized α-Ni(OH)2 as Electrode Material for Alkaline Secondary Cells. Journal of The Electrochemical Society, 1994. 141(11): p. 2956.
70. Wu, M.Y., et al., Effects of coprecipitated manganese on the structure and electrochemical performance of Al-substituted α-nickel hydroxide. Journal of Solid State Electrochemistry, 2006. 10(6): p. 411-415.
71. Li, P., et al., Interface-Mediated Synthesis of Transition-Metal (Mn, Co, and Ni) Hydroxide Nanoplates. Crystal Growth & Design, 2013. 13(5): p. 1949-1954.
72. Buscaglia, M.T., et al., Morphological Control of Hydrothermal Ni(OH)2 in the Presence of Polymers and Surfactants: Nanocrystals, Mesocrystals, and Superstructures. Crystal Growth & Design, 2008. 8(10): p. 3847-3855.
73. Li, Q.Y., et al., Preparation of three-dimensional flower-like Ni(OH)2 nanostructures by a facile template-free solution process. Journal of Alloys and Compounds, 2010. 496(1): p. 300-305.
74. Acharya, R., et al., Effect of preparation parameters on electrolytic behaviour of turbostratic nickel hydroxide. Materials Chemistry and Physics, 2003. 81(1): p. 45-49.
75. Xiao, L., et al., Preparation of LiNi0.5Mn0.5O2 cathode materials by urea hydrolysis coprecipitation. Solid State Ionics, 2011. 192(1): p. 335-338.
76. Huang, L.F., et al., Improved Electrochemical Phase Diagrams from Theory and Experiment: The Ni–Water System and Its Complex Compounds. The Journal of Physical Chemistry C, 2017. 121(18): p. 9782-9789.
77. Kirubasankar, B., et al., 2D MoSe2-Ni(OH)2 nanohybrid as an efficient electrode material with high rate capability for asymmetric supercapacitor applications. Chemical Engineering Journal, 2019. 355: p. 881-890.
78. Li, Y., et al., Synthesis and electrochemical performance of mixed phase α/β nickel hydroxide. Journal of Power Sources, 2012. 203: p. 177-183.
79. Li, Y., et al., Synthesis of α-Ni(OH)2 with hydrotalcite-like structure: Precursor for the formation of NiO and Ni nanomaterials with fibrous shapes. Chemical Engineering Journal, 2008. 136(2-3): p. 398-408.
80. Ma, Y., M. Yang, and X. Jin, Formation mechanisms for hierarchical nickel hydroxide microstructures hydrothermally prepared with different nickel salt precursors. Colloids and Surfaces A Physicochemical and Engineering Aspects, 2020. 588: p.124-374.
81. Shangguan, E., et al., A comparative study of structural and electrochemical properties of high-density aluminum substituted α-nickel hydroxide containing different interlayer anions. Journal of Power Sources, 2015. 282: p. 158-168.
82. Li, X., et al., Mn-substituted nickel hydroxide prepared by ball milling and its electrochemical properties. Journal of alloys and compounds, 2011. 509(32): p. 8246-8250.
指導教授 李岱洲(Tai-Chou Lee) 審核日期 2020-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明