博碩士論文 107223042 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:3.137.176.238
姓名 鄭宇廷(Yu-Ting Cheng)  查詢紙本館藏   畢業系所 化學學系
論文名稱 綠色醣鏈結反應:以Nafion® NR50樹脂促進硫醣苷之醣鏈結反應
(Green Glycosylation: Promoting Thioglycoside by Reusable Nafion® NR50 Resin)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-31以後開放)
摘要(中) 有機醣化學為有機化學中重要的分支,因為醣類在生物體中扮演著重要的角色,舉凡植物中的細胞壁,生物體內的細胞膜及血液中。由於某些重要醣體較難以從天然物中獲得,因此,有機化學合成的方式就顯得重要。近年來環保意識抬頭,綠色化學是近年科學家關注的課題之一,科學家希望能夠降低在化學反應中利用或產生對環境有害的物質。因此本論文的將以納菲樹脂(Nafion® NR50)取代醣基化反應中的酸來進行醣基化反應,且此納菲樹脂(Nafion® NR50)經過甲醇簡單清洗乾燥後可重覆利用達10次以上僅大約6%的產率下降,此舉已達到對環境友善的目的。本論文的後段將以有機合成方法製備一系列稀有葡萄糖胺雙醣結構,部分無法以納菲樹脂(Nafion® NR50)合成鏈結之醣體將以Koenigs–Knorr反應鏈結,目的為提供此一系列的雙醣與中央研究院原子與科學研究所合作建立雙醣資料庫,以利未來分析未知醣體時有質譜光譜資料可遵循。
摘要(英) Carbohydrates Chemistry is a large and important branch of organic chemistry, because carbohydrates play an important role in living organism, such as cell walls in plants, cell membranes and blood in organisms. Since some important sugars are difficult to obtain from natural sources, the method of organic chemical synthesis is important. In recent years, environmental awareness has risen. Green chemistry is one of the topics that scientists have paid attention to in recent years. Scientists hope to reduce the use or production of substances harmful to the environment in chemical reactions. Therefore, in this thesis, Nafion resin (Nafion® NR50) will be used to replace the acid in the glycosylation reaction, and this Nafion resin (Nafion® NR50) can be reused after simple washing and drying in methanol. Over 10 times, only about 6% of the yield has dropped, which has achieved the goal of being friendly to the environment. In the latter part of this thesis, a series of rare glucosamine disaccharide structures will be prepared by organic synthesis. Some sugars that cannot be synthesized with Nafion resin (Nafion® NR50) will be linked by Koenigs–Knorr reaction. The purpose is to provide this series of disaccharides cooperates with Institute of Atomic and Molecular Sciences, Academia Sinica to establish a disaccharide database to facilitate the future analysis of unknown sugars with mass spectrometry data.
關鍵字(中) ★ 醣鏈結反應
★ 硫醣苷
★ 樹脂
★ 可回收
關鍵字(英) ★ glycosylation
★ thioglycoside
★ resin
★ reusable
論文目次 摘要 x
Abstract xi
謝誌 xii
目錄 xiv
圖目錄 xvii
表目錄 xviii
流程目錄 xix
縮寫表 xxi
第一章 緒論 1
1.1 引言 1
1.2 醣類的合成方法:有機合成及酵素合成 2
1.3 醣鏈結反應 4
1.4 影響醣鏈結反應之立體選擇性的主要因素 6
1.4.1 變旋異構效應(Anomeric Effect) 7
(1)超共軛效應(Hyperconjugation) 8
(2)最小偶極矩效應(Dipole minimization) 8
(3)電子斥力(Electronic Repulsion) 9
1.4.2 鄰基參與效應(Neighboring group participation) 9
1.4.3 溶劑效應(Solvent effect) 10
1.4.4 Relative Reactivity Value(RRV) 11
1.5 醣鏈結反應之離去基與促進劑 11
1.5.1 醋酸鹽醣予體(Glycosyl Acetate) 12
1.5.2 醣基鹵化物(Glycosyl Halide) 13
(1)氟醣苷(Glycosyl Fluoride) 13
(2)氯醣苷(Glycosyl Chloride) 13
(3)溴醣苷(Glycosyl Bromide) 14
(4)碘醣苷(Glycosyl Iodide) 14
1.5.3 三氯乙醯胺醣予體(Trichloroacetimidate)及其衍伸物 15
1.5.4 硫醣苷(Thioglycoside) 17
1.6 固態酸催化醣鏈結反應 19
1.7 Nafion®簡介 20
1.8 研究動機 21
第二章 結果與討論 23
2.1 以Nafion® NR50樹脂促進醣鏈結反應 23
2.2 以Nafion® NR50樹脂促進醣鏈結反應之優化 23
2.3 以Nafion® NR50樹脂進行醣鏈結反應 27
2.3.1 以Nafion® NR50促進半乳糖醣予體進行醣鏈結反應 27
2.3.2 以Nafion® NR50促進岩藻糖醣予體進行醣鏈結反應 30
2.3.3 以Nafion® NR50促進甘露糖醣予體進行醣鏈結反應 31
2.3.4 以Nafion® NR50促進葡萄糖胺醣予體進行醣鏈結反應 33
2.4 Nafion® NR50回收清洗後再進行醣鏈結反應之探討 35
2.5 Nafion®促進醣鏈結反應之可能反應機構探討 39
2.5.1可能之反應機制 40
2.5.2 反應機制之探討 42
2.6 合成雙醣去保護反應及罕見鏈結之雙醣的合成 46
2.6.1以Nafion® NR50系統合成雙醣之去保護流程 47
(1)Gal-α-1,3-GlcNAc雙醣醣體之去保護步驟 47
(2)Man-α-1,3-GlcNAc雙醣醣體之去保護步驟 48
2.6.2 Koenigs–Knorr反應合成之雙醣分子 49
(1)GlcNAc-α-1,3-Gal之合成與去保護之步驟 49
(2)GlcNAc-α-1,6-Gal之合成與去保護之步驟 50
第三章 結論 53
第四章 參考資料 54
第五章 實驗部分及光譜 58
參考文獻 [1] Fox, S. Human physiology, McGraw-Hill Education, 2015.
[2] Dwek, R. A. Chem. Rev. 1996, 96, 683-720.
[3] Jefferis, R. Biotechnol. Prog. 2005, 21, 11-16.
[4] Holgersson, J.; Gustafsson, A.; Breimer, M. E. Immunol. Cell Biol. 2005, 83, 694-708.
[5] Brandley, B. K.; Schnaar, R. L. J. Leukocyte Biol. 1986, 40, 97-111.
[6] Zeng, X.; Andrade, C. A.; Oliveira, M. D.; Sun, X.-L. Anal. Bioanal. Chem. 2012, 402, 3161-3176.
[7] Wiederschain, G. Y. Essentials of glycobiology, Springer Science & Business Media, 2009.
[8] Walstra, P.; Walstra, P.; Wouters, J. T.; Geurts, T. J. Dairy science and technology, CRC press, 2005.
[9] Hattori, H.; Roesslein, J.; Caspers, P.; Zerbe, K.; Miyatake‐Ondozabal, H.; Ritz, D.; Rueedi, G.; Gademann, K. Angew. Chem., Int. Ed. 2018, 57, 11020-11024.
[10] Artsimovitch, I.; Seddon, J.; Sears, P. Clin. Infect. Dis. 2012, 55, 127-131.
[11] Wang, C.-C.; Lee, J.-C.; Luo, S.-Y.; Kulkarni, S. S.; Huang, Y.-W.; Lee, C.-C.; Chang, K.-L.; Hung, S.-C. Nature 2007, 446, 896-899.
[12] Xu, L.; Qi, T.; Xu, L.; Lu, L.; Xiao, M. J. Carbohydr. Chem. 2016, 35, 1-23.
[13] Desmet, T.; Soetaert, W.; Bojarová, P.; Křen, V.; Dijkhuizen, L.; Eastwick‐Field, V.; Schiller, A. Chem. Eur. J. 2012, 18, 10786-10801.
[14] Seeberger, P. H.; Finney, N.; Rabuka, D.; Bertozzi, C. R. Chemical and enzymatic synthesis of glycans and glycoconjugates, Cold Spring Harbor Laboratory Press, 2009.
[15] Nilsson, K. G. Trends Biotechnol. 1988, 6, 256-264.
[16] Vidal, S. ACS Cent. Sci. 2020, 6, 83-86.
[17] Adero, P. O.; Amarasekara, H.; Wen, P.; Bohé, L.; Crich, D. Chem. Rev. 2018, 118, 8242-8284.
[18] Zhu, X.; Schmidt, R. R. Angew. Chem., Int. Ed. 2009, 48, 1900-1934.
[19] Lee, Y. C.; Lee, R. T. J. Chin. Chem. Soc. 1999, 46, 283-291.
[20] Demchenko, A. V. Handbook of chemical glycosylation: advances in stereoselectivity and therapeutic relevance, John Wiley & Sons, 2008.
[21] Wolfe, S.; Myung-Hwan, W.; Mitchell, D. J. Carbohydr. Res. 1979, 69, 1-26.
[22] Warrent, R. W.; Caughlan, C. N.; Hargis, J. H.; Yee, K.; Bentrude, W. G. J. Org. Chem. 1978, 43, 4266-4270.
[23] Mo, Y. Nat. Chem. 2010, 2, 666-671.
[24] Das, R.; Mukhopadhyay, B. ChemistryOpen 2016, 5, 401-433.
[25] Nigudkar, S. S.; Demchenko, A. V. Chem. Sci. 2015, 6, 2687-2704.
[26] Lu, S. R.; Lai, Y. H.; Chen, J. H.; Liu, C. Y.; Mong, K. K. T. Angew. Chem. Int. Ed. 2011, 50, 7315-7320.
[27] Satoh, H.; Hansen, H. S.; Manabe, S.; van Gunsteren, W. F.; Hünenberger, P. H. J. Chem. Theory Comput. 2010, 6, 1783-1797.
[28] Zhang, Z.; Ollmann, I. R.; Ye, X.-S.; Wischnat, R.; Baasov, T.; Wong, C.-H. J. Am. Chem. Soc. 1999, 121, 734-753.
[29] Chang, C. W.; Wu, C. H.; Lin, M. H.; Liao, P. H.; Chang, C. C.; Chuang, H. H.; Lin, S. C.; Lam, S.; Verma, V. P.; Hsu, C. P.; Wang, C.-C. Angew. Chem. Int. Ed. 2019, 58, 16775-16779.
[30] Bokor, E.; Kun, S.; Goyard, D.; Toth, M.; Praly, J.-P.; Vidal, S.; Somsak, L. Chem. Rev. 2017, 117, 1687-1764.
[31] Lee, Y. S.; Rho, E. S.; Min, Y. K.; Kim, B. T.; Kim, K. H. J. Carbohydr. Chem. 2001, 20, 503-506.
[32] Yang, G.; Wang, Q.; Luo, X.; Zhang, J.; Tang, J. Glycoconjugate J. 2012, 29, 453-456.
[33] Takeuchi, K.; Mukaiyama, T. Chem. Lett. 1998, 27, 555-556.
[34] Michael, A. J. Am. Chem. Soc. 1879, 1, 403.
[35] Tamura, J.-i.; Terayama, R.; Shimadate, T. J. Carbohydr. Chem. 1993, 12, 893-902.
[36] Koenigs, W.; Knorr, E. Ber. Dtsch. Chem. Ges. 1901, 34, 957-981.
[37] Fischer, E.; Armstrong, E. F. In Untersuchungen Über Kohlenhydrate und Fermente (1884–1908); Springer: 1909, 799-814.
[38] Hanessian, S.; Banoub, J. Preparation of 1, 2-trans-glycosides in the presence of silver trifluoromethanesulfonate, Elsevier, 1980.
[39] Helferich, B.; Zirner, J. Chem. Ber 1962, 95, 2604-2611.
[40] Meloncelli, P. J.; Martin, A. D.; Lowary, T. L. Carbohydr. Res. 2009, 344, 1110-1122.
[41] Helferich, B.; Gootz, R. Ber. Dtsch. Chem. Ges. 1929, 62, 2788-2792.
[42] Thiem, J.; Meyer, B. Chem. Ber. 1980, 113, 3075-3085.
[43] Lam, S. N.; Gervay-Hague, J. Org. Lett. 2002, 4, 2039-2042.
[44] Schmidt, R. R.; Michel, J. Angew. Chem. 1980, 92, 763-764.
[45] Schmidt, R. R.; Michel, J. Angew. Chem. Int. Ed. 1980, 19, 731-732.
[46] Schmidt, R. R.; Kinzy, W. Adv. Carbohydr. Chem. Biochem. 1994, 50, 21-123.
[47] Stick, R. V.; Williams, S. Carbohydrates: the essential molecules of life, Elsevier, 2010.
[48] Yu, B.; Tao, H. Tetrahedron Lett. 2001, 42, 2405-2407.
[49] Veeneman, G.; Van Leeuwen, S.; Van Boom, J. Tetrahedron Lett. 1990, 31, 1331-1334.
[50] Barroca, N.; Schmidt, R. R. Org. Lett. 2004, 6, 1551-1554.
[51] Tilve, M. J.; Gallo-Rodriguez, C. Carbohydr. Res. 2014, 397, 7-17.
[52] Huang, X.; Huang, L.; Wang, H.; Ye, X. S. Angew. Chem. Int. Ed. 2004, 43, 5221-5224.
[53] Verma, V. P.; Wang, C. C. Chem. Eur. J. 2013, 19, 846-851.
[54] Douglas, S. P.; Whitfield, D. M.; Krepinsky, J. J. J. Carbohydr. Chem. 1993, 12, 131-136.
[55] Urban, F. J.; Moore, B. S.; Breitenbach, R. Tetrahedron Lett. 1990, 31, 4421-4424.
[56] Schmidt, R. R.; Behrendt, M.; Toepfer, A. Synlett 1990, 1990, 694-696.
[57] Ogawa, H.; Koh, T.; Taya, K.; Chihara, T. J. Catal. 1994, 148, 493-500.
[58] Harmer, M. A.; Farneth, W. E.; Sun, Q. J. Am. Chem. Soc. 1996, 118, 7708-7715.
[59] Harmer, M. A.; Sun, Q. Appl. Catal., A 2001, 221, 45-62.
[60] Gorityala, B. K.; Ma, J.; Pasunooti, K. K.; Cai, S.; Liu, X.-W. Green Chem. 2011, 13, 573-577.
[61] Olah, G. A.; Mathew, T.; Farnia, M.; Prakash, G. S. Synlett 1999, 1999, 1067-1068.
[62] Li, M.; Bai, Y.; Zhou, J.; Huang, W.; Yan, J.; Tao, J.; Fan, Q.; Liu, Y.; Mei, D.; Yan, Q. MBio 2019, 10, 128-119.
[63] Courtneidge, J. L.; Lusztyk, J.; Pagé, D. Tetrahedron Lett. 1994, 35, 1003-1006.
[64] Green ChemistryLiu, C.; Shen, D.-M.; Chen, Q.-Y. Chem. Commun. 2006, 7, 770-772.
指導教授 王正中 謝發坤(Cheng-Chung Wang Fa-Kuen Shieh) 審核日期 2020-8-10
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明