博碩士論文 107223602 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:67 、訪客IP:3.137.221.163
姓名 謝伊卡(Novia Eka Setyatama)  查詢紙本館藏   畢業系所 化學學系
論文名稱
(Multi-photon Absorption and Amplified Spontaneous Emission Properties of Novel Chromophores Derived from Functionalized Benzotriazole and Fluorene Units: Synthesis and Characterization)
相關論文
★ 含五苯荑及異參茚并苯衍生物之合成與光物理行為之研究★ 具雙光子吸收行為之染料分子的合成與其光學性質探討
★ 新型雙光子吸收材料的分子設計與合成及其光學性質的探討★ 新型多叉及樹枝狀染料分子的合成及其非線性光學性質探討
★ 新穎多叉型之雙光子吸收材料的分子設計、合成與光學性質探討★ 新型四取代乙烯類及喹喔啉類染料分子的合成及其光學性質探討
★ 新型具喹喔啉、三嗪和吡嗪結構之染料分子 的合成及其光學性質探討★ Synthesis and Nonlinear Optical Property Characterizations of Novel Chromophores with Extended π-Conjugation Derived from Functionalized Fluorene Units
★ 含四取代乙烯及類喹喔啉結構單元之多分岐染料分子的合成與其非線性光學性質探討★ Synthesis and Nonlinear Optical Property Characterizations of Novel Fluorophores with Multi-Quinoxalinyl Units
★ 新型含茚并喹喔啉結構單元之樹狀共軛染料分子的合成與其非線性光學性質探討★ 含四取代乙烯乙炔及類喹喔啉結構單元之多分歧染料分子的合成與非線性光學性質探討
★ Two-Photon Absorption and Optical Power-limiting Properties of Three- and Six-Branched Chromophores Derived from 1,3,5-Triazine and Fluorene Units★ 新型含喹喔啉及各類拉電子基之染料分子的合成及其非線性光學性質探討
★ 含咔唑、芴及茚并喹喔啉等雜環單元之共軛染料分子的合成 與其非線性光學性質探討★ 合成各類以雜環為核心的分子並研究其非線性光學性質
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 本論文開發出以苯並三唑 (benzotriazole) 與芴 (fluorene) 為結構單元之模型分子,並探討其多光子吸收與增幅自發放射 (amplified spontaneous emission,簡稱ASE) 之光學性質。我們成功透過Suzuki加成反應取得高產率之目標染料分子 (70-94 %),並透過核磁共振光譜與質譜確認結構。我們對此系列模型分子進行線性光學與非線性光學性質量測,在線性光學實驗方面,我們量測了線性吸收光譜、螢光光譜、螢光量子產率與螢光生命期;而在非線性光學性質方面,我們以可調波長之飛秒脈衝雷射系統作為激發光源以進行多光子吸收之相關實驗。從實驗結果中我們發現在這些模型分子中,2OMe-DFL-Tr2同時擁有最優異的雙光子與三光子吸收表現。我們也發現推與拉電子官能基的強度亦與分子的雙及三光子吸收效率息息相關。另外,此系列之分子結構雖為D-π-A-π-D之對稱模型分子,卻擁有非常明顯的溶劑效應。當我們將模型分子溶於甲苯進行光穩定性實驗時,發現具有甲氧基團 (-OMe) 之模型分子在長時間的UV燈照射下皆較不穩定。另一方面,我們將此系列分子以355 nm的奈秒雷射橫向激發以進行ASE實驗時,發現此系列分子中,2FL-Tr2、2DFL-Tr2及2OMe-DFL-Tr2具有雙重ASE之光學性質,未來將會針對此有趣的光物理現象進行更深一步的研究。
摘要(英) A new set of model chromophores derived from functionalized benzotriazole and fluorene has been designed and synthesized to investigate of their multi-photon absorption and amplified spontaneous emission (ASE) properties. All model chromophores were synthesized by Suzuki reaction as the final coupling step and were obtained in high yields (70–94%). The structure confirmation of the precursors and model chromophores were determined by 1H NMR, 13C NMR and HRMS. The linear optical properties including absorption spectra, fluorescence spectra, fluorescence quantum yields and lifetime of these model chromophores were investigated by the corresponding spectrometers. As for the multi-photon absorption properties, we have utilized a wavelength-tunable femtosecond laser system to carry out multi-photon-excited fluorescence (MPEF) experiments. The experimental result show that “2OMe-DFL-Tr2” manifests the strongest two-photon and three-photon absorption (2PA and 3PA) among congeners. It is also found that the strength of electron-donors and electron-acceptors are crucial to the molecular 2PA and 3PA. Moreover, all the model chromophores with generic structure of D--A--D possess strong solvatochromic behavior despite of their symmetric nature in the molecular skeleton. We also have tested the photostability of the studied chromophores in solution phase and have found those structures with methoxy groups (i.e. -OMe group) are comparatively unstable under prolonged irradiation of UV-light. On other hand, all the studied model chromophores manifest ASE properties when transversely pumped by a nanosecond laser at 355 nm. It is also found that three of the investigated chromophores (i.e. 2FL-Tr2, 2DFL-Tr2, and 2OMe-DFL-Tr2) exhibit dual-ASE and further studies about such an interesting phenomenon is currently undergoing.
關鍵字(中) ★ 苯並三唑 關鍵字(英) ★ Benzotriazole
論文目次 ABSTRACT ............................................................................................................................... i
ACKNOLEDGEMENT ............................................................................................................ iii
TABLE OF CONTENTS .......................................................................................................... iv
LIST OF FIGURE ..................................................................................................................... vi
LIST OF TABLE ........................................................................................................................ x
LIST OF ABBREVIATIONS AND SYMBOLS ...................................................................... xi
Chapter 1. .................................................................................................................................. 1
Introduction ............................................................................................................................... 1
1.1 Backgound ..................................................................................................................................... 1
1.2 Purpose of this Research ................................................................................................................ 2
1.3 Organization of Thesis ................................................................................................................... 2
1.4 Reference ....................................................................................................................................... 3
Chapter 2. .................................................................................................................................. 4
Organic Compound with multi-photon and/or ASE properties: A brief review ........................ 4
2.1 Organic Compounds with Multi-photon Absorption (MPA) Properties ........................................ 4
2.2 Organic Compounds that exhibit ASE Properties .......................................................................... 6
2.3 Organic Compounds that Multi-photon absorption and ASE Properties ..................................... 10
2.4 Molecular Design of Chromophores in this research ................................................................... 10
2.5 Reference ..................................................................................................................................... 13
CHAPTER 3 ...................................................................................................................................... 15
EXPERIMENTAL SECTION ........................................................................................................... 15
3.1 Synthetic Procedure...................................................................................................................... 15
3.1.1 Synthetic Procedure of Central Core .....................................................................................15
3.1.2 Synthesis Peripheral Compounds ..........................................................................................17
3.1.3 Synthesis Procedure of Target Compounds ..........................................................................21
3.2 Optical Measurement ................................................................................................................... 23
3.2.1 Linear optical measurement ..................................................................................................23
3.2.2 Quantum Yield and Lifetime .................................................................................................23
3.2.3 Solvatochromism ...................................................................................................................23
3.2.4 Photostability Measurement ..................................................................................................24
3.2.5 Two-Photon Excited Fluorescence (2PEF) Measurement ....................................................24
3.2.6 Three-photon Induced Fluorescence (3PEF) Measurement ..................................................25
3.2.6 Amplified Spontaneous Emission (ASE) ..............................................................................26
v
3.3 Reference ..................................................................................................................................... 27
CHAPTER 4 ............................................................................................................................. 29
RESULT AND DISCUSSION ................................................................................................. 29
4.1 Linear Optical Properties .........................................................................................................30
4.1.2 Two photon excited fluorescence (2PEF) .............................................................................37
4.1.3 Three-photon absorption (3PA) Properties ...........................................................................41
4.2 Amplified Spontaneous Emission (ASE) Properties .................................................................... 44
4.3 Photostability ............................................................................................................................... 49
4.4 Conclusion ................................................................................................................................... 52
4.5 Reference ..................................................................................................................................... 53
CHAPTER 5. ............................................................................................................................ 54
DETAILED SYNTHETIC PROCEDURE .............................................................................. 54
CHAPTER VI ........................................................................................................................... 76
SPECTRAL DATA FOR STRUCTURE CHARACTERIZATION ....................................... 76
參考文獻 1.4 Reference
[1] Martin, R., Prieto, P., Carrillo, J. R., Rodrigues, A. M., Cozar, A, de., Boj, P. G., Diaz-Garcia, M. A., and Ramirez, M. G., Design, synthesis and amplified spontaneous emission of 1,2,5-benzothiadiazole derivatives, Journal Material Chemistry C., 2019, 7, 996-10007.
[2] He, G. S., Tan, L.S., Zheng, Q., Prasad, P.N., Multi-photon Absorbing Materials: Molecular Designs, Characterizations, and Applications, Chemical Review, 2008, 108, 1245-1330.
[3] Guo, L., Liu, X., Zhang, T., Luo, H.B., Fan, H.H., Wong, M.S., Star-shaped triazine-core ladder-type ter(p-phenylene)s for high performance multi-photon absorption and amplified apontaneous blue emission, Journal Material Chemistry C, 2020, 8, 1768-1772.
[4] Jiang, Y., Fang, M., Chang, Si-Ju, Huang, Jin-Jin, Chu, Shuang-Quan, Hu, Shan-Ming, Liu, Cheng-Fang, Lai, Wen-Yong, Huang, W., Towards Monodisperse Star-Shaped Ladder-Type Conjugated System: Design, Synthesis, Stabilized Blue Electroluminescene and Amplified Spontaneous Emission, Chemistry European Journal, 2017, 23, 5448-5458.
[5] Lin, T.-C., Lin, J-Y., Tsai, B.-K., Liang, N.-Y., Chien, W., Synthesis and multi-photon absorption properties of symmetric bisarylacetylene chromophores using functionalized isomeric pyrazinoindenocarbazole units as the rigid aryl substituents, Dyes and Pigments, 2016, 132, 347-359.
[6] Oyama, Y., Masashi M., Atul Shukla, Evan G. Moore, Shih-Chun Lo, Ebinazar B. Namdas, and Chihaya Adachi Design Strategy for Robust Organic Semiconductor Laser Dyes, ACS Materials Letters, 2020, 2, 161−167
[7] Torres-Moya, I., Benitez-Martin, Carlos, Donoso, B., Tardio, C., Martin, R., Carrillo, J. R., Diaz-Ortiz, Angel, Najera, F., Prieto, P., and Perez-Inestrosa, E., Extended Alkenyl and Alkynyl Benzotriazoles with Enhanced Two‐Photon Absorption Properties as a Promising Alternative to Benzothiadiazoles, Chemistry European Journal, 2019, 25, 15572-15579.
2.5 Reference
[1] He, G. S., Tan, L.S., Zheng, Q., Prasad, P.N., Multi-photon Absorbing Materials: Molecular Designs, Characterizations, and Applications, Chemical Review, 2008, 108, 1245-1330.
[2] Reinhardt, B. A., Brott, L. L., Clarson, S. J., Dillard, A. G., Bhatt,J. C., Kannan, R., Yuan, L., He, G. S., Prasad, P. N., Highly active two-photon dyes: design, synthesis, and characterization toward application, Chemistry of Material, 1998, 10, 1863.
[3] He, G. S., Swiatkiewicz, J., Jiang, Y., Prasad, P. N., Reinhardt, B. A., Tan, L.-S., Kannan, R., Two-Photon Excitation and Optical Spatial-Profile Reshaping via a Nonlinear Absorbing Medium, Journal of Physical Chemistry A 2000, 104, 4805-4810.
[4] Lin, T.-C., Lin, J-Y., Tsai, B.-K., Liang, N.-Y., Chien, W., Synthesis and multi-photon absorption properties of symmetric bisarylacetylene chromophores using functionalized isomeric pyrazinoindenocarbazole units as the rigid aryl substituents, Dyes and Pigments, 2016, 132, 347-359.
[5] Chenais, S. and Forget. S., Recent advances in Solid-State Organic Lasers. Polymer International, Wiley-Blackwell, 2011, 61,390-406.
[6] Nguyen, D. M., Design, Synthesis, and Characterization of Novel Hydrophilic Fluorene-Based Derivatives for Bioimaging Application, Ph.D Disertation, University of Fluorida, 2009.
[7] Soffer, B. H. and McFarland, B. B., Continuously Tunable, Narrow-Band Organic Dye Lasers, Applied Physics Letters, 1967, 10, 266.
[8] Tang, C. W., and Vanslyke, S. A., Organic Electroluminescent Diodes, Applied Physics Letters, 1987, 51, 913- 915.
[9] Vannahme, C., Klinkhammer, S., Lemmer, U. and Mappes, T., Plastic lab-on-a-chip for fluorescence excitation with integrated organic semiconductor lasers, Optics Express., 2011, 19, 8179.
[10] Amarasinghe, D., Ruseckas, A., Turnbull, G. A. and Samuel, I. D. W., Organic Semiconductor Optical Amplifiers, Proceedings of the IEEE 97, 2009, 1637-1650.
[11] Jiang, Y., Fang, M., Chang, Si-Ju, Huang, Jin-Jin, Chu, Shuang-Quan, Hu, Shan-Ming, Liu, Cheng-Fang, Lai, Wen-Yong, Huang, W., Towards Monodisperse Star-Shaped Ladder-Type Conjugated System: Design, Synthesis, Stabilized Blue Electroluminescene and Amplified Spontaneous Emission, Chemistry European Journal, 2017, 23, 5448-5458.
14
[12] Scherf, U., K. Müllen, Polyarylenes and poly(arylenevinylenes). 7. A soluble ladder polymer via bridging of functionalized poly(p-phenylene)-precursors, Makromoleculare. Chem. Rapid Commun., 1991, 12, 489-497.
[13] Martin, R., Prieto, P., Carrillo, J. R., Rodrigues, A. M., Cozar, A, de., Boj, P. G., Diaz-Garcia, M. A., and Ramirez, M. G., Design, synthesis and amplified spontaneous emission of 1,2,5-benzothiadiazole derivatives, Journal Material Chemistry C., 2019, 7, 996-10007.
[14] Oyama, Y., Masashi M., Atul Shukla, Evan G. Moore, Shih-Chun Lo, Ebinazar B. Namdas, and Chihaya Adachi Design Strategy for Robust Organic Semiconductor Laser Dyes, ACS Materials Letters, 2020, 2, 161−167
[15] Guo, L., Liu, X., Zhang, T., Luo, H.B., Fan, H.H., Wong, M.S., Star-shaped triazine-core ladder-type ter(p-phenylene)s for high performance multi-photon absorption and amplified spontaneous blue emission, Journal Material Chemistry C, 2020, 8, 1768-1772.
[16] Torres-Moya, I., Benitez-Martin, Carlos, Donoso, B., Tardio, C., Martin, R., Carrillo, J. R., Diaz-Ortiz, Angel, Najera, F., Prieto, P., and Perez-Inestrosa, E., Extended Alkenyl and Alkynyl Benzotriazoles with Enhanced Two‐Photon Absorption Properties as a Promising Alternative to Benzothiadiazoles, Chemistry European Journal, 2019, 25, 15572-15579.
3.3 Reference
[1] Fan, K. W., Peterson, M. B., Ellersdorfer, P., and Granville, A. M., Expanding the aqueous-based redox-facilitated self-polymerization chemistry of catecholamines to 5,6-dihydroxy-1H-benzimidazole and its 2- substituted derivatives, RSC Advanced., 2016, 6, 25203.
[2] Zhang, Q., Xiao, B., Du, M.,, Li, G., Tang, A., and Zhou, E.,, A2–A1–D–A1–A2 type non-fullerene acceptors based on methoxy substituted benzotriazole with three different end-capped groups for P3HT-based organic solar cells, Journal Material Chemistry C, 2018, 6, 10902. [3] Kim, J.-H., Kim, H. U., Song, C. E., Kang, I.-N., Lee, J.-K., Shin, W. S., Hwang, D.-H., Benzotriazole-based donor-acceptor type semiconducting polymers with different alkyl side chains for photovoltaic devices, Solar Energy Materials and Solar Cells, 2013, 108, 113-125. [4] Aldakov, D., Palacios, Manuel A., Anzenbacher, Pavel, Jr., Benzothiadiazoles and Dipyrrolyl Quinoxalines with Extended Conjugated Chromophores−Fluorophores and Anion Sensors, Chemistry Materials. 2005, 17, 21, 5238–5241.
[5] Jin, Y., Kim, Y., Kim, Sun H., Song, S., Woo, Han Y., Lee, K., Suh, H., Novel Green-Light-Emitting Polymers Based on Cyclopenta[def]phenanthrene, Macromolecules, 2008, 41, 15, 5548–5554. [6] Kajigaeshi, S., Kakinami, T., Moriwaki, M., Tanaka, T., Fujisaki, S., Okamoto, T., Halogenation using quaternary ammonium polyhalides. XIV. Aromatic bromination and iodination of arenes by use of benzyltrimethylammonium polyhalides-zinc chloride system, Bulletin of the Chemical Society of Japan, 1993, 62, 493-443.
[7] Reinhardt, B. A., Brott, L. L., Clarson, S. J., Dillard, A. G., Bhatt, J. C., Kannan, R., Yuan, L., He, G. S., Prasad, P. N., Highly active two-photon dyes: design, synthesis, and characterization toward application, Chemistry Material, 1998, 10, 7, 1863–1874. [8] Ishiyama, T., Murata, M., Miyaura, N., Palladium(0)-Catalyzed Cross-Coupling Reaction of Alkoxydiboron with Haloarenes: A Direct Procedure for Arylboronic Esters, Journal of Organic Chemistry. 1995, 60, 7508-7510. [9] Wolfe, J. P., Wagaw, S., Buchwald, S. L., An Improved Catalyst System for Aromatic Carbon-Nitrogen Bond Formation: The Possible Involvement of Bis(Phosphine) Palladium Complexes as Key Intermediates, Journal of American Chemistry Society. 1996, 118, 30, 7215–7216. [10] Lee, M.-J., Kang, M. S., Shin, M.-K.., Park, J.-W., Chung, D. S., Park, C. E., Kwon, S.-K., Kim, Y.-H., Synthesis and characterization of poly(1,4-bis((E)-2-(3-dodecylthiophen-
28
2-yl)vinyl)benzene) derivatives, Journal of Polymer Science: Part A: Polymer Chemistry, 2010, Vol. 48, 3942–3949 . [11] Podkoscielny, D., Hooley, Richard J., Rebek, Julius, Jr., Kaifer, Angel E., Ferrocene Derivatives Included in a Water-Soluble Cavitand: Are They Electroinactive?, Organic Letters. 2008, 10, 13, 2865–2868. [12] Gangopadhyay, M., Mukhopadhyay, Sourav K., Gayathri, S., Biswas, S., Barman, Shrabani, Dey, Satyahari, Singh, N. D. Pradeep, Fluorene-morpholine-based organic nanoparticles: lysosome-targeted pH-triggered two-photon photodynamic therapy with fluorescence switch on-off, Journal Material Chemistry B, 2016, 4, 1862-1868.
[13] Saroja, G., Pingzhu, Z., Ernsting, N.P., and Liebscher, J., Synthesis of Alkylated Aminofluorenes by Palladium-Catalyzed Substitution at Halofluorenes, Journal of Organic Chemistry, 2004, 69, 987-990. [14] Belfield, K. D., Schafer, K. J., Mourad, W., Reinhardt, B. A., Synthesis of new two-photon absorbing fluorene derivatives via Cu-mediated Ullmann condensations, Journal Organic Chemistry, 2000, 65, 15, 4475–4481. [15] Jiang, Y., Lu, Y.-X., Cui, Y.-X., Zhou, Q-F., Ma, Y., Pei, J., Synthesis of Giant Rigid π-Conjugated Dendrimers, Organic Letters. 2007, 9, 22, 4539–4542. [16] Mengel, A. K. C., He, B., Wenger, O. S., A Triarylamine-Triarylborane Dyad with a Photochromic Dithienylethene Bridge, Journal of Organic Chemistry, 2012, 77, 15, 6545–6552.
[17] Abbel, R., Grenier, C., Pouderoijen, M.,J., Stouwdam, Jan W., Leclere, Philippe E. L. G., Sijbesma, Rint P., Meijer, E. W., Schenning, Albertus P. H. J., White-Light Emitting Hydrogen-Bonded Supramolecular Copolymers Based on π-Conjugated Oligomers, Journal of American Chemistry Society. 2009, 131, 2, 833–843. [18] Lin, T.C., Wei C., Shu-Wen Daid, Hao-Wu Lind, Yueh-Ching Liu, Multi-photon properties in various condensed phases of dendritic chromophores derived from carbazole and indenoquioxaline units: Synthesisand characterization, Dyes and Pigments, 2019, 168, 140–150.
4.5 Reference [1] Ren, S., Zheng, D., Zhong, H., Wang, Y., Qian, S., Fang, Q., Journal of Physical Chemistry. 2010, 114, 10379.
[2] Lin, T.-C., Tsai, B.-K., Huang, T.-Y., Chien, W., Liu, Y.-Y., Li, M.-H., Tsai, M.-Y., Synthesis and two-photon absorption properties of truxene-core chromophores with functionalized pyrazine units fused as the end-groups, Dye and Pigments, 2015, 120, 99-111.
[3] Guo, L., Liu, X., Zhang, T., Luo, H.B., Fan, H.H., Wong, M.S., Star-shaped triazine-core ladder-type ter(p-phenylene)s for high performance multi-photon absorption and amplified apontaneous blue emission, Journal Material Chemistry C, 2020, 8, 1768-1772. [4] Kumar, D. Sasti and Masilamani, V., Dual ASE from laser dyes with rigidises electron donor, 1995. Proc. Indian Acad. Sci. (Chemical Science), 1995, 107, 593-599. [5] Jagtap, K., Ray, A.K., Sinha, S. Effect of emission wavelength on photo-stability of laser dye: experimental and theoretical study. Applied Physic B, 2012, 108, 833–838.
指導教授 林子超(Tzu-Chau Lin) 審核日期 2020-8-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明