博碩士論文 107324006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:63 、訪客IP:18.222.167.85
姓名 顧鈞平(Chun-Ping Ku)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 尖錐狀中空奈米結構陣列之製備及性質研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 在本研究中,我們報導在製備出一維奈米結構後,以濺鍍金屬鎳薄膜技術結合氫氟酸修飾與鹼性蝕刻之新穎製程,成功地在(001)矽單晶基材製備出大面積規則準直排列之錐狀鎳奈米管陣列結構,並藉由調控氫氟酸修飾次數與濕式蝕刻時間可以分別控制矽單晶奈米管的內外徑以及長度。此外,若奈米管之間排列較緊密,因靜電屏蔽效應而嚴重影響場發射性質,因此本實驗嘗試以相同製備手法製備出間距較大、不同尺寸之錐狀鎳奈米管陣列結構。由場發射性質量測結果顯示,在相同高度下,口徑小之錐狀鎳奈米管與口徑較大之鎳奈米管相比,可以發現其場增強因子從7784提升至8517,起始電場從0.83 V μm-1下降至0.77 V μm-1,大幅提升場發射的效應。
在高度方面隨著高度下降在口徑約相同之條件下,可以發現其場增強因子從8517降至4821,起始電場從0.77 V μm-1下降至0.99 V μm-1,因此可以判斷高度對於場發射來說影響重大。將上述製程結合熱退火處理,成功製備出錐狀鎳矽化物奈米管陣列結構。
摘要(英) Abstract
In this study, we reported the fabrication about one-dimensional nanostructure, a novel process successfully fabricates a large-area, well-ordered of tapered nickel nanotube structure on (001) silicon substrate, which combining hydrofluoric acid modification and alkaline etching process, and the internal diameter and length of nickel nanotubes can be controlled by hydrofluoric acid modification and the wet etching time. In addition, if the nanotubes are crowded, the field emission properties are seriously affected by the screening effect. Therefore, this study attempts to fabricate the tapered nickel nanotube arrays of different sizes with the same method. Field emission measurement’s result show that at the same height, the small diameter tapered nickel nanotube compared with larger one shows that the field enhancement factor has been increased from 7784 to 8517, and turn-on field was reduced from 0.83 Vμm. -1 dropped to 0.77 Vμm-1, significantly enhancing the effect of field emission.
Under the condition that the aperture is the same, when the height decreased the field enhancement factor shifts from 8517 to 4821, and the initial incidence drops from 0.77 Vμm-1 to 0.99 Vμm-1. Combining the above process with thermal annealing treatment, also successfully fabricated a tapered nickel silicide nanotube arrays.
關鍵字(中) ★ 矽化物奈米管 關鍵字(英) ★ silicide nanotube
論文目次 目錄
第一章 前言及文獻回顧 1
1-1 前言 1
1-2電子場發射電極元件 3
1-2-1 電子場發射相關理論 3
1-2-2一維單晶矽奈米結構應用於電子場發射之研究 4
1-2-3 奈米管結構應用於電子場發射之研究 5
1-3一維金屬奈米線與奈米管之製備 6
1-4金屬矽化物 7
1-4-1 金屬矽化物之製程與應用 7
1-4-2薄膜鎳金屬矽化物 9
1-4-3鎳金屬矽化物奈米線 9
1-4-4鎳矽化物奈米線應用於電子場發射之研究 10
1-5 研究動機及目標 12
第二章 實驗步驟及實驗設備 13
2-1 規則有序排列且準直之矽單晶奈米柱陣列結構 13
2-1-1 矽晶基材使用前處理 13
2-1-2 自組裝奈米球陣列模板製備 13
2-1-3 蒸鍍純金薄膜 14
2-1-4 金屬輔助催化蝕刻法製備矽單晶奈米柱陣列 14
2-2 規則有序排列且準直之鎳矽化物奈米管陣列結構 14
2-2-1 鎳薄膜之濺鍍沉積 14
2-2-2氫氟酸破壞頂部純鎳薄膜 14
2-2-3 選擇性蝕刻中心柱狀矽 15
2-3 規則有序排列且準直之錐狀鎳奈米管陣列結構 15
2-4 規則有序排列且準直之鎳矽化物奈米管陣列結構 15
2-4-1 鎳矽核殼奈米錐結構高溫熱退火處理 15
2-4-2氫氟酸破壞頂部純鎳薄膜並選擇性蝕刻中心殘餘鎳 16
2-5 試片分析 16
2-3-1 掃描式電子顯微鏡 16
2-3-2 穿透式電子顯微鏡 17
2-3-3 影像式水滴接觸角量測儀 17
2-3-4真空電子場發射性質量測系統 18
第三章 結果與討論 19
3-1 大面積週期性排列之金屬鎳奈米管陣列 19
3-1-1 聚苯乙烯奈米球模板製備 19
3-1-2 製備矽單晶奈米柱陣列並濺鍍金屬鎳 21
3-1-3 氫氟酸修飾頂部鎳並結合鹼性蝕刻法 22
3-2 大面積週期性排列之矽單晶奈米錐陣列 22
3-3 大面積週期性排列之鎳矽殼核奈米錐陣列 24
3-4 氫氟酸修飾鎳矽殼核奈米錐頂部 25
3-5 鹼性蝕刻法蝕刻頂部裸露之中心矽 27
3-6 電子場發射性質量測及探討 29
3-7 尖錐狀鎳矽化物奈米管陣列結構 31
第四章 結論及未來展望 34
參考文獻 36
表目錄 49
圖目錄 51
參考文獻 [1] G. E. Moore, "Cramming more components onto integrated circuits," Electron. Mag. (1965) 4.
[2] D. M. Newman, M. L. Wears, M. Jollie and D. Chooand, “Fabrication and characterization of nano-particulate PtCo media for ultra-high density perpendicular magnetic recording,” Nanotechnology 18 (2007) 205-301.
[3] T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15 (2007) 4198-4204.
[4] S. J. Ku, G. C. Jo, C. H. Bak, S. M. Kim and Y. R. Shin, “Fabrication and photovoltaic property of ordered macroporous silicon,” Appl. Phys. Lett. 95 (2009) 143-119.
[5] Y. F. Tzeng, H. C. Wu, P. S. Sheng, N. H. Tai, H. T. Chiu, C. Y. Lee, and I. N. Lin, "Stacked silicon nanowires with improved field enhancement factor," ACS Appl. Mater. Interfaces 2 (2010) 331.
[6] S. L. Wu, J. L. Deng, T. Zhang, R. T. Zheng, and G. A. Cheng, “Tunable synthesis of carbon nanosheet/silicon nanowire hybrids for field emission applications,” Diam. Relat. Mater. 26 (2012) 83.
[7] S. M. Jeong, E. C. Garnett, S. Wang, Z. F. Yu, S. H. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, "Hybrid silicon nanocone−polymer solar cells," Nano. Letters 12 (2012) 2971.
[8] J. Y. Jung, H. D. Um, S. W. Jee, K. T. Park, J. H. Bang, and J. H. Lee, "Optimal design for antireflective Si nanowire solar cells," Sol. Energy Mater Sol. Cells 112 (2013) 84.
[9] D. L. Zhang, G. Cheng, J. Q. Wang, C. Q. Zhang, Z. Liu, Y. H. Zuo, J. Zheng, C. L. Xue, C. B. Li, B. W. Cheng, and Q. M. Wang, "Horizontal transfer of aligned Si nanowire arrays and their photoconductive performance," Nanoscale Res. Lett. 9 (2014) 661.
[10] D. P. Tran, T. J. Macdonald, B. Wolfrum, R. Stockmann, T. Nann, A. Offenha ̈usser, and B. Thierry, "Photoresponsive properties of ultrathin silicon nanowires," Appl. Phys. Lett. 105 (2014) 231116.
[11] Y. J. Hung, S. L. Lee, L. C. Beng, H. C. Chang, Y. J. Huang, K. Y. Lee, and Y. S. Huang, “Relaxing the electrostatic screening effect by patterning vertically-aligned silicon nanowire arrays into bundles for field emission application” Thin Solid Films 556 (2014) 146.
[12] J. Y. Kim, J. H. Ahn, D. I. Moon, T. J. Park, S. Y. Lee, and Y. K. Choi, “Multiplex electrical detection of avian influenza and human immunodeficiency virus with an underlap-embedded silicon nanowire field-effect transistor,” Biosens. Bioelectron 55 (2014) 162-7.
[13] S. O. Belostotskaya, O. V. Chuyko, A. E. Kuznetsov, E. V. Kuznetsov, E. N. Rybachek, “Silicon nanowire structures as high–sensitive pH-sensors,” J. Phys. 345 (2012) 012008.
[14] T. Wu, A. Alharbi, K.D. You, K. Kisslinger, E. A. Stach, D Shahrjerdi, “Experimental study of the detection limit in dual-gate biosensors using ultrathin silicon transistors,” ACS Nano. 11 (2017) 7142−7147.
[15] W. Cheng, L. Yu, D. Kong, Z. Yu, H. Wang, Z. Ma, Y. Wang, J. Wang, L. Pan, and Y. Shi, “Fast-response and low-hysteresis flexible pressure sensor based on silicon nanowires,” IEEE Electron Device Lett. 39 (2018) 1069-1072.
[16] E. Garnett, P. Yang, “Light trapping in silicon nanowire solar cells,” Nano. Letters 10 (2010) 1082-1087.
[17] K. Peng, X. Wang, S.T. Lee, “Silicon nanowire array photoelectrochemical solar cells,” Appl. Phys. Lett. 92 (2008) 163103.
[18] F. Wang, Y. Zhang, M. Yang, L. Yang, Y. Sui, J. Yang, Y. Zhao, and X. Zhang, “Realization of 16.9% efficiency on nanowires heterojunction solar cells with dopant-free contact for bifacial polarities,” Adv. Funct. Mater. 28 (2018) 1805001.
[19] T. Song, L. Hu, U. Paik, “One-dimensional silicon nanostructures for Li ion batteries,” J. Phys. Chem. 5 (2014) 720−731.
[20] K. B. Kang, H. S. Lee, D. W. Han, G. S. Kim, D. H. Lee, “Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery,” Appl. Phys. Lett. 96 (2010) 053110.
[21] H. C. Wu, H. Y. Tsai, H. T. Chiu, C. Y. Lee, “Silicon rice-straw array emitters and their superior electron field emission,” Appl. Mater. Interfaces 2 (2010) 3285-3288.
[22] Y. F. Tzeng, H. C. Wu, P. S. Sheng, N. H. Tai, H. T. Chiu, C. Y. Lee, and I. N. Lin, “Stacked Silicon Nanowires with Improved Field Enhancement Factor,” Appl. Mater. Interfaces 2 (2010) 331-334.
[23] H. C. Wu, T. Y. Tsai, F. F. Chu, N. H. Tai, H. N. Lin, H. T. Chiu, C. Y. Lee, “Electron field emission properties of nanomaterials on rough silicon rods,” J. Phys. Chem. 114 (2010) 130–133.
[24] F. Zhao, D. D. Zhao, S.L Wu, G.A Cheng, and R. T. Zheng, “Fabrication and electron field emission of silicon nanowires synthesized by chemical etching,” J Korean Phys Soc. 55 (2009) 2681-2684.
[25] V. Kumar, S. K. Saxena, V. Kaushik, K. Saxena, A. Shukla, and R. Kumar, “Silicon nanowires prepared by metal induced etching (MIE): good field emitters,” RSC Adv. 4 (2014) 57799-57803.
[26] R. Khare, M. A. More, and D. Chakravarty, “Transformation of ZnO nanorods into nanotubes and their field emission studies,” Modern Physics Letters B 29 (2015) 1540044.
[27] K. S. Hazra, T. Gigras, and D. Misra, “Tailoring the electrostatic screening effect during field emission from hollow multiwalled carbon nanotube pillars,” Appl. Phys. Lett. 98 (2011) 123116.
[28] Y. Monika, R. Kumar, R. P. Chauhan, R. Kumar, and S. K Chakarvarti, “Preparation and field emission study of low-dimensional ZnS arrays and tubules,” J. Exp. Nanosci. 10 (2015)126–134.
[29] S. Lv, Z. Li, J. Liao, Z. Zhang, and W. Miao, “Well-aligned NiSi/Si heterostructured nanowire arrays as field emitters,” J. Vac. Sci. Technol. B 33 (2015) 02B101.
[30] S. S. Choi, M. Y. Jung, M. S. Joo, D. W. Kim, M. J. Park, S. B. Kim, and H. T. Jeon, “Field emission study of titanium silicide array,” Surf. Interface Analy. 36 (2004) 435.
[31] C. F. Chuang and S. L. Cheng, “Fabrication and properties of well-ordered arrays of single-crystalline NiSi2 nanowires and epitaxial NiSi2/Si heterostructures,” Nano Research 7(11) (2014) 1592-1603.
[32] R. H. Fowler and L. W. Nordheim, “Electron emission in intense electric fields,” Royal Society of London A119 (1928) 173.
[33] C. H. Kuo, J. M. Wu and S. J. Lin, “Room temperature-synthesized vertically aligned InSb nanowires: electrical transport and field emission characteristics,” Nanoscale Res. Lett. 8 (2013) 69.
[34] T. Basu, M. Kumar, M. Saini, J. Ghatak, B. Satpati and T. Som, “Surfing silicon nanofacets for cold cathode electron emission sites,” ACS Appl. Mater. Interfaces 9 (2017) 38931.
[35] Y. Shen, N. S. Xu, P. Ye, Y. Zhang, F. Liu, J. Chen, J. She and S. Z. Deng, “An analytical modeling of field electron emission for a vertical wedged ordered nanostructure,” Adv. electron. mater. 3 (2017) 1700295.
[36] J. J. Niu, J.N. Wang, and N.S. Xu, “Field emission property of aligned and random SiC nanowires arrays synthesized by a simple vapor–solid reaction,” Solid State Sciences 10 (2008) 618-621.
[37] C. H. Kuo, J.-M. Wu, and S.-J. Lin, “Room temperature-synthesized vertically aligned InSb nanowires electrical transport and field emission characteristics,” Nanoscale Research Letters, 8 (2013) 69.
[38] L. Nilsson, O. Groaning, C. Emmenegger, O. Kuetell, E. Schaller, L. Schlapbach, H. Kind, J. M. Bonard and K. Kern, “Scanning field emission from patterned carbon nanotube films,” Appl. Phys. Lett. 76 (2000) 2071.
[39] Y. Shen, N. Xu, P. Ye, Y. Zhang, F. Liu, J. Chen, J. She, and S. Deng, “An analytical modeling of field electron emission for a vertical wedged ordered nanostructure,” Adv. Electron. Mater. 3 (2017) 1700295.
[40] U. Ray, D. Banerjee, B. Das, N.S. Das, S.K. Sinha, and K.K. Chattopadhyay, “Aspect ratio dependent cold cathode emission from vertically aligned hydrophobic silicon nanowires,” Mater. Res. Bull. 97 (2018) 232-237.
[41] S. Lv, Z. Li, C. Chen, J. Liao, G. Wang, M. Li and W. Miao, “Enhanced field emission performance of hierarchical ZnO/Si nanotrees with spatially branched heteroassemblies,” ACS Appl. Mater. Interfaces 7 (2015) 13564-13568.
[42] Z. J. Qian, X. Y. Liu, Y. Yang and Q. X. Yin, “Enhancing field emission performance of aligned Si nanowires via in situ partial oxidization,” J. Nanosci. Nanotechnol. 14 (2014) 6209-6212.
[43] S. L. Cheng, H. C. Lin, Y. H. Huang and S. C. Yang, “Fabrication of periodic arrays of needle-like Si nanowires on (001)Si and their enhanced field emission characteristics,” RSC Adv. 7 (2017) 23935-23941.
[44] W. Li, J. Zhou, X. G. Zhang, J. Xu, L. Xu1, W. M. Zhao, P. Sun, F. Q. Song, J. G. Wan, K. J. Chen, “Field emission from a periodic amorphous silicon pillar array fabricated by modified nanosphere lithography,” Nanotechnology 19 (2008) 135308.
[45] H. Y. Hsieh, S. H. Huang, K. F. Liao, S. K. Su, C. H. Lai, L. J. Chen, “High-density ordered triangular Si nanopillars with sharp tips and varied slopes: one-step fabrication and excellent field emission properties,” Nanotechnology 18 (2007) 505305.
[46] L. Xu, W. Li, J. Xu, J. Zhou, L. C. Wu, X. G. Zhang, Z. Y. Ma, K. J. Chen, “Morphology control and electron field emission properties of high-ordered Si nanoarrays fabricated by modified nanosphere lithography,” Appl. Surf. Sci. 255 (2009) 5414-5417.
[47] Y. M. Chang, P. H. Kao, H. M. Tai, H. W. Wang, C. M. Lin, H. Y. Leede, J. Y. Juang, “Enhanced field emission characteristics in metal-coated Si-nanocones,” Phys. Chem. Chem. Phys.15 (2013) 10761-10766.
[48] H. F. Hsu, J. Y. Wang, Y. H. Wu, “KOH etching for tuning diameter of Si nanowire arrays and their field emission characteristics,” J. Electrochem. Soc. 161(2014) H53-H56.
[49] W. D. Zhu, C. W. Wang, J. B. Chen, D. S. Li, F. Zhou and H. L. Zhang, “Enhanced field emission from hydrogenated TiO2 nanotube arrays,” Nanotechnology 23 (2012) 455204.
[50] S. Maity, N. S. Das and K. K. Chattopadhyay, “Controlled surface damage of amorphous and crystalline carbon nanotubes for enhanced field emission,” Phys. Status Solidi B 250 (2013) 1919-1925.
[51] S. G. Jang, H. K. Yu, D. G. Choi and S. M. Yang, “Controlled fabrication of hollow metal pillar arrays using colloidal masks,” Chem. Mater. 18 (2006) 6103-6105.
[52] Y. Agrawal, G. Kedawat, P. Kumar, J. Dwivedi, V. N. Singh, R. K. Gupta and B. K. Gupta, “High-performance stable field emission with ultralow turn on voltage from rGO conformal coated TiO2 nanotubes 3D arrays,” Sci. Rep. 5 (2015) 11612.
[53] S. C. Hung and Y. J. Chen, “Enhanced field emission properties of tilted graphene nanoribbons on aggregated TiO2 nanotube arrays,” Mater. Res. Bull. 79 (2016) 115–120.
[54] W. D. Zhu, C. W. Wang, J. B. Chen, Y. Li and J. Wang, “Enhanced field emission from Ti3+ self-doped TiO2 nanotube arrays synthesized by a facile cathodic reduction process,” Appl. Surf. Sci. 301 (2014) 525-529.
[55] X. P. Shen, A. H. Yuan, Y. M. Hu, Y. Jiang, Z. Xu and Z. Hu, “Fabrication, characterization and field emission properties of large-scale uniform ZnO nanotube arrays,” Nanotechnology 16 (2005) 2039-2043.
[56] A. Wei, X. W. Sun, C. X. Xu, Z. L. Dong, M. B. Yu and W. Huang, “Stable field emission from hydrothermally grown ZnO nanotubes,” Appl. Phys. Lett. 88 (2006) 213102.
[57] J. Yuan, H. Li, Q. Wang, X. Zhang, S. Cheng, H. Yu, X. Zhu and Y. Xie, “Facile fabrication of aligned SnO2 nanotube arrays and their field-emission property,” Mater. Lett. 118 (2014) 43-46.
[58] M. S. Wu, J. T. Lee, Y. Y. Wang and C. C. Wan, “Field emission from manganese oxide nanotubes synthesized by cyclic voltammetric electrodeposition,” 108 (2004) J. Phys. Chem. B 108 (2004) 16331-16333.
[59] X. Duan and C. M. Lieber. “General synthesis of compound semiconductor nanowires,” Adv. Mater. 12 (2000) 298.
[60] Y. Wang, M. Hegde, S. Chen, P. Yin, and P. V. Radovanovic. “Control of the spontaneous formation of oxide overlayers on gap nanowires grown by physical vapor deposition,” AIMS Mater. Sci. 5 (2018) 105-115.
[61] C. Brun, P. H. Elchinger, G. Nonglaton, C. Tidiane-Diagne, R. Tiron, A. Thuaire, D. Gasparutto, and X. Baillin. “Metallic conductive nanowires elaborated by PVD metal deposition on suspended DNA bundles,” Small. 13 (2017).
[62] M. Shariati and F. Khosravinejad. “The laser-assisted field effect transistor gas sensor based on morphological zinc-excited tin-doped In2O3 nanowires,” Surf. Rev. Lett. 24 (2017).
[63] J. S. Yu, H. S. Liu, X. G. Zhou, and H. L. Wang. “Growing SiC nanowires on modified SiC fibers surface via a chemical vapor deposition route,” IOP Conf. Ser.: Mater. Sci. Eng. 504 (2019).
[64] M. Zheng, Q. Jia, X. Liu, and G. Jia. “Synthesis of ultra-long aluminum nitride nanowires with excellent photoluminescent property by aluminum chloride assisted chemical vapor reaction technique,” Ceram. Int. 45 (2019) 12387-12392.
[65] Y. You, M. Mayyas, S. Xu, I. Mansuri, V. Gaikwad, P. Munroe, V. Sahajwalla, and R. K. Joshi. “Growth of NiO nanorods, SiC nanowires and monolayer graphene via a CVD method,” Green Chem. 19 (2017) 5599-5607.
[66] X. Li, N. Kim, S. Youn, T. K. An, J. Kim, S. Lim, and S. H. Kim. “Sol(-)gel-processed organic(-)inorganic hybrid for flexible conductive substrates based on gravure-printed silver nanowires and graphene,” Polymers. 11 (2019).
[67] H. Lin, H. Li, Q. Shen, X. Shi, X. Tian, and L. Guo. “Catalyst-free growth of high purity 3C-SiC nanowires film on a graphite paper by sol-gel and ICVI carbothermal reduction,” Mater. Lett. 212 (2018) 86-89.
[68] Y. R. Jo, S. H. Myeong, and B. J. Kim. “Role of annealing temperature on the sol–gel synthesis of VO2 nanowires with in situ characterization of their metal–insulator transition,” RSC Adv. 8 (2018) 5158-5165.
[69] M. Song, J. Lee, B. Wang, B. A. Legg, S. Hu, J. Chun, and D. Li. “In situ characterization of kinetics and mass transport of PbSe nanowire growth via LS and VLS mechanisms,” Nanoscale. 11 (2019) 5874-5878.
[70] H. J. Fan, P. Werner, and M. Zacharias. “Semiconductor nanowires: from self-organization to patterned growth,” Small. 2 (2006) 700-17.
[71] W. Lu and C. M. Lieber. “Semiconductor nanowires,” J. Phys. D: Appl. Phys. 39 (2006) R387-R406.
[72] T. Ishiyama, S. Nakagawa, T. Wakamatsu, and N. Fujiwara. “Synthesis of β-FeSi2 nanowires by using silicon nanowire templates,” AIP Adv. 8 (2018).
[73] M. P. Zach, K. H. Ng, and R. M. Penner. “Molybdenum nanowires by electrodeposition,” Sci. 290 (2000) 2120.
[74] M. P. Zach, K. Inazu, K. H. Ng, J. C. Hemminger, and R. M. Penner. “Synthesis of molybdenum nanowires with millimeter-scale lengths using electrochemical step edge decoration,” Chem. Mater. 14 (2002) 3206-3216.
[75] H. W. Shin and J. Y. Son. “Magnetic domain structure and magnetic anisotropy in ferromagnetic Y3Fe5O12 nanowires formed by step-edge decoration,” J. Magn. Magn. Mater. 444 (2017) 102-105.
[76] X. Zhu, J. Fan, Y. Zhang, H. Zhu, B. Dai, M. Yan, and Y. Ren. “Preparation of superparamagnetic and flexible γ-Fe2O3 nanowire arrays in an anodic aluminum oxide template,” J. Mater. Sci. 52 (2017) 12717-12723.
[77] J. E. Graves, M. E. A. Bowker, A. Summer, A. Greenwood, C. Ponce de León, and F. C. Walsh, “A new procedure for the template synthesis of metal nanowires,” Electrochem. Commun. 87 (2018) 58-62.
[78] K. Blagg, T. Greymountain, W. Kern, and M. Singh, “Template-based electrodeposition and characterization of niobium nanowires,” Electrochem. Commun. 101 (2019) 39-42.
[79] Q. Xu, G. Meng, and F. Han, “Porous AAO template-assisted rational synthesis of large-scale 1D hybrid and hierarchically branched nanoarchitectures,” Prog. Mater Sci. 95 (2018) 243-285.
[80] S. Kumar, T. W. Kang, P. Y. Khan, S. Kumar, M. Goyal, and R. K. Choubey, “Study of electroless template synthesized ZnSe nanowires and its characterization,” J. Mater. Sci. - Mater. Electron. 25 (2013) 957-961.
[81] T. Hussain, A. T. Shah, K. Shehzad, A. Mujahid, Z. H. Farooqi, M. H. Raza, M. N. Ahmed, and Z. U. Nisa, “Formation of self-ordered porous anodized alumina template for growing tungsten trioxide nanowires,” Int. Nano Lett. 5 (2014) 37-41.
[82] Y. Wang, S. Gong, D. Gomez, Y. Ling, L. W. Yap, G. P. Simon, and W. Cheng, “Unconventional janus properties of Enokitake-like gold nanowire films,” ACS Nano. 12 (2018) 8717-8722.
[83] N. Dadvand and G. J. Kipouros, “Electroless fabrication of cobalt alloys nanowires within alumina template,” J. Nanomater. 2007 (2007) 1-6.
[84] L. Gu, D. Zhang, M. Kam, Q. Zhang, S. Poddar, Y. Fu, X. Mo, and Z. Fan, “Significantly improved black phase stability of FAPbI3 nanowires via spatially confined vapor phase growth in nanoporous templates,” Nanoscale. 10 (2018) 15164-15172.
[85] S. Sanjay, P. Kandasamy, S. Singh, and K. Baskar, “Growth and characterization of gallium nitride nanowires on nickel/sapphire template by chemical vapour deposition”, The Physics of Semiconductor Devices. (2019) 249-254.
[86] J. Zhang, L. Jin, S. Li, J. Xie, F. Yang, J. Duan, T.-H. Shen, and H. Wang. “Fabrication of two types of ordered inp nanowire arrays on a single anodic aluminum oxide template and its application in solar cells,” J. Mater. Sci. Technol. 31 (2015) 634-638.
[87] J. Guiliani, J. Cadena, and C. Monton. “Template-assisted electrodeposition of Ni and Ni/Au nanowires on planar and curved substrates,” Nanotechnology. 29 (2018) 075301.
[88] H. Zhang, W. Jia, H. Sun, L. Guo, and J. Sun. “Growth mechanism and magnetic properties of Co nanowire arrays by AC electrodeposition,” J. Magn. Magn. Mater. 468 (2018) 188-192.
[89] P. G. Schiavi, A. Rubino, P. Altimari, and F. Pagnanelli, Two electrodeposition strategies for the morphology-controlled synthesis of cobalt nanostructures, in AIP Conf. Proc (2018) 020005.
[90] M. I. Irshad, F. Ahmad, N. M. Mohamed, and M. Z. Abdullah. “Preparation and structural characterization of template assisted electrodeposited copper nanowires,” Int. J. Electrochem. Sci. 9 (2014) 2548 - 2555.
[91] T. Mochizuki, T. Tsujimaru, M. K. Agi, and Y. Nishi, “Film Properties of MoSi2 and their application to self-aligned MoSi2 gate MOSFET,” IEEE JSSC SC-15 (1980) 4.
[92] J. B. Lasky, J. S. Nakos, O. J. Cain, and P. J. Geiss, “Comparison of transformation to low-resistivity phase and agglomeration of TiSi, and COS,” IEEE T-ED. 38 (1991) 2 .
[93] H.F. Hsua, H.Y. Chana, T.H. Chena, H.Y. Wua, S.L. Chengb, F.B. Wuc, “Epitaxial growth of uniform NiSi2 layers with atomically flat silicide/Si interface by solid-phase reaction in Ni–P/Si(1 0 0) systems,” Appl. Surf. Sci. 257 (2011) 7422-7426.
[94] J. Lu, X. Gao, S. L. Zhang, and L. Hultman, “Crystallization of NiSix in a body-centered cubic structure during solid-state reaction between an ultrathin Ni film and Si(001) Substrate at 150−350 °C,” Cryst. Growth Des. 13 (2013) 1801-1806.
[95] D. Connetablea, O. Thomasb, “First-principles study of nickel-silicides ordered phases,” J. Alloys Compd. 509 (2011) 2639-2644.
[96] H. Iwaia , T. Ohgurob, S. I. Ohmia, “NiSi salicide technology for scaled CMOS,” Microelectronic Eng. 60 (2002) 157-169.
[97] Y. Wu1, J. Xiang, C. Yang, W. Lu ,and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 430 (2004) 1.
[98] G.F. Iriarte, “Growth of nickel silicide (NiSix) nanowires by silane decomposition,” Current Applied Physics 11 (2011) 82-86.
[99] N. F. F. B. Nazarudin, S. N. A. B. Azizan, S. A. Rahman, B. T. Goh, “Growth and structural property studies on NiSi/SiC core-shell nanowires by hot-wire chemical vapor deposition,” Thin Solid Films xxx (2014) xxx–xxx.
[100] H. F. Hsu, C. H. Tseng, and T. H. Chen, “Formation of epitaxial NiSi2 nanowires on Si(100) surface by atomic force microscope nanolithography,” J. Nanosci. Nanotechnol. 10 (2010) 4533-4537.
[101] S. Lee, J. Yoon, B. Koo, D. H. Shin, J. H. Koo, C. J. Lee, Y. W. Kim, H. Kim, T. Lee, “Formation of vertically aligned cobalt silicide nanowire arrays through a solid-state reaction,” IEEE Trans Nanotechnol 12 (2013).
[102] Y. W. Ok, T. Y. Seong, C. J. Choi, and K. N. Tu, “Field emission from Ni-disilicide nanorods formed by using implantation of Ni in Si coupled with laser annealing,” Appl. Phys. Lett. 13 (2013)717.
[103] J. D. Kim, E. S. Lee, C. S. Han, Y. J. Kang, D. J. Kim, and W. A. Anderson, “Observation of Ni silicide formations and field emission properties of Ni silicide nanowires,” Microelectron Eng. 85 (2008) 1709.
[104] C. Y. Lee, M. P. Lu, K. F. Liao, W. F. Lee, C. T. Huang, S. Y. Chen, and L. J. Chen, “Free-standing single-crystal NiSi2 nanowires with excellent electrical transport and field emission properties,” J. Phys. Chem. C 113 (2009) 2286.
[105] C. J. Kim, K. Kang, Y. S. Woo, K. G. Ryu, H. Moon, J. M. Kim, D. S. Zang, and M. H. Jo, “Spontaneous chemical vapor growth of NiSi nanowires and their metallic properties” Advanced Materials 19 (2007) 3637.
[106] Z. H. Liu, H. Zhang, L. Wang, and D. Yang, “Controlling the growth and field emission properties of silicide nanowire arrays by direct silicification of Ni foil” Nanotechnology 19 (2008) 375602.
[107] C. Y. Lee, M. P. Lu, K. F. Liao, W. W. Wu, and L. J. Chen, “Vertically well-aligned epitaxial Ni 31 Si 12 nanowire arrays with excellent field emission properties” Appl. Phys. Lett. 93 (2008) 113109.
[108] C. Y. Liu, W. S. Li, L. W. Chu, M. Y. Lu, C. J. Tsai, and L. J. Chen, “An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters,” Nanotechnology 22 (2010) 055603.
[109] C. F. Chuang and S. L. Cheng, “Fabrication and properties of well-ordered arrays of single-crystalline NiSi2 nanowires and epitaxial NiSi2/Si heterostructures,” Nano Research 7 (2014) 1592.
[110] S. S. Lv, Z. C. Li, J. C. Liao, Z. J. Zhang, and W. Miao, “Well-aligned NiSi/Si heterostructured nanowire arrays as field emitters” Journal of Vacuum Science & Technology B 24 (2014) 1949.
[111] A. Kosloff, E. Granot, Z. Barkay, and F. Patolsky, “Controlled formation of radial core−shell Si/metal silicide crystalline heterostructures,” Nano. Lett. 18 (2018) 70−80.
[112] F. T., N. Li, D. Xu, D. Xiao, X. Yang and N. Lu, “Precise regulation of tilt angle of Si nanostructures via metal-assisted chemical etching,” Nanoscale 9 (2017) 449-453.
[113] T. L. Court and M. F. A. Dove, “Fluorine compounds of Nickel(rii),” J. Chem. Soc., Dalton Trans. (1973) 1995-1997.
[114] T. Hosoya, Y. Ozaki, and K. Hirata, “Effects of wet cleaning on Si contaminated with heavy metals during reactive ion etching,” J. Electrochem. Soc. 132 (1985) 2436-2439.
[115] J.L. Duan, D.Y. Lei, F. Chen, S. P. Lau, W. I. Milne, M. E. Toimil-Molares, C. Trautmann, J Liu, “Vertically-aligned single-crystal nanocone arrays: controlled fabrication and enhanced field emission,” ACS Appl. Mater. Interfaces 8 (2016) 472−479.
[116] C. Kim, W. Gu, M. Briceno, I. M. Robertson, H. Choi, K. Kim, “Copper nanowires with a five‐twinned structure grown by chemical vapor deposition,” Adv. Mater 20 (2008) 1859–1863.
[117] I. C. Chang, T. K. Huang, H. K. Lin, Y. F. Tzeng, C. W. Peng, F. M. Pan, C.Y. Lee, H.T. Chiu, “Growth of pagoda-topped tetragonal copper nanopillar arrays,” ACS Appl. Mater. Interfaces 7 (2009) 1375–1378.
[118] P. Serbun, F. Jordan, A. Navitski, G. Müller, I. Alber, M. E. Toimil-Molares and C. Trautmann, “Copper nanocones grown in polymer ion-track membranes as field emitters,” Ur. Phys. J. Appl. Phys. 58 (2012) 10402.
[119] J. Joo, S. J. Lee, D. H. Park, Y. S. Kim, Y. Lee, C. J. Lee and S. R. Lee, “Field emission characteristics of electrochemically synthesized nickel nanowires with oxygen plasma post-treatment,” Nanotechnology 17 (2006) 3506–3511.
[120] T. Hang, H. Ling, A. Hu, and M. Li, “Growth mechanism and field emission properties of nickel nanocones array fabricated by one-Step electrodeposition,” J. Electrochem. Soc. 157 (2010) 624-627.
[121] J. Wang, L. Wei, L. Zhang, J. Zhang, H. Wei, C. Jiang and Y. Zhang, “Controlled growth of nickel nanocrystal arrays and their field electron emission performance enhancement via removing adsorbed gas molecules,” CrystEngComm 15 (2013) 1296-1306.
[122] S. Wang, Y. He, X. Fang, J. Zou, Y. Wang, H. Huang, P. M. F. J. Costa, M. Song, B. Huang, C. T. Liu, P. K. Liaw, Y. Bando, and D. Golberg, “Structure and field-emission properties of sub-micrometer-sized tungsten-whisker arrays fabricated by vapor deposition,” Adv. Mater 21 (2009) 2387-2392.
[123] Y. Baek, Y. Song, K. Yong, “A novel heteronanostructure system: hierarchical W nanothorn arrays on WO3 nanowhiskers,” Adv. Mater. 18 (2006) 3105-3110.
[124] C. Trautmann, S. Karim, “Efficient field emission from structured gold nanowire cathodes,” Eur. Phys. J. Appl. Phys. 48 (2009) 30502.
[125] T. Kim, J. Kim, S. J. Son, S. Seo, “Gold nanocones fabricated by nanotransfer printing and their application for field emission,” Nanotechnology 19 (2008) 295302.
[126] L. Vila, P. Vincent, G. Pirio, E. Minoux, L. Gangloff, S. Demoustier-Champagne, N. Sarazin, E. Ferain, R. Legras, L. Piraux, P. Legagneux, “Growth and field-emission properties of vertically aligned cobalt nanowire arrays,” Nano Lett 4 (2004) 521-524.
[127] I. Chakraborty, P. Ayyub, “Controlled clustering in metal nanorod arrays leads to strongly enhanced field emission characteristics,” Nanotechnology 23 (2012) 015704.
指導教授 鄭紹良(Shao-Liang Cheng) 審核日期 2020-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明