參考文獻 |
[1] G. E. Moore, "Cramming more components onto integrated circuits," Electron. Mag. (1965) 4.
[2] D. M. Newman, M. L. Wears, M. Jollie and D. Chooand, “Fabrication and characterization of nano-particulate PtCo media for ultra-high density perpendicular magnetic recording,” Nanotechnology 18 (2007) 205-301.
[3] T. Søndergaard and S. I. Bozhevolnyi, “Metal nano-strip optical resonators,” Opt. Express 15 (2007) 4198-4204.
[4] S. J. Ku, G. C. Jo, C. H. Bak, S. M. Kim and Y. R. Shin, “Fabrication and photovoltaic property of ordered macroporous silicon,” Appl. Phys. Lett. 95 (2009) 143-119.
[5] Y. F. Tzeng, H. C. Wu, P. S. Sheng, N. H. Tai, H. T. Chiu, C. Y. Lee, and I. N. Lin, "Stacked silicon nanowires with improved field enhancement factor," ACS Appl. Mater. Interfaces 2 (2010) 331.
[6] S. L. Wu, J. L. Deng, T. Zhang, R. T. Zheng, and G. A. Cheng, “Tunable synthesis of carbon nanosheet/silicon nanowire hybrids for field emission applications,” Diam. Relat. Mater. 26 (2012) 83.
[7] S. M. Jeong, E. C. Garnett, S. Wang, Z. F. Yu, S. H. Fan, M. L. Brongersma, M. D. McGehee, and Y. Cui, "Hybrid silicon nanocone−polymer solar cells," Nano. Letters 12 (2012) 2971.
[8] J. Y. Jung, H. D. Um, S. W. Jee, K. T. Park, J. H. Bang, and J. H. Lee, "Optimal design for antireflective Si nanowire solar cells," Sol. Energy Mater Sol. Cells 112 (2013) 84.
[9] D. L. Zhang, G. Cheng, J. Q. Wang, C. Q. Zhang, Z. Liu, Y. H. Zuo, J. Zheng, C. L. Xue, C. B. Li, B. W. Cheng, and Q. M. Wang, "Horizontal transfer of aligned Si nanowire arrays and their photoconductive performance," Nanoscale Res. Lett. 9 (2014) 661.
[10] D. P. Tran, T. J. Macdonald, B. Wolfrum, R. Stockmann, T. Nann, A. Offenha ̈usser, and B. Thierry, "Photoresponsive properties of ultrathin silicon nanowires," Appl. Phys. Lett. 105 (2014) 231116.
[11] Y. J. Hung, S. L. Lee, L. C. Beng, H. C. Chang, Y. J. Huang, K. Y. Lee, and Y. S. Huang, “Relaxing the electrostatic screening effect by patterning vertically-aligned silicon nanowire arrays into bundles for field emission application” Thin Solid Films 556 (2014) 146.
[12] J. Y. Kim, J. H. Ahn, D. I. Moon, T. J. Park, S. Y. Lee, and Y. K. Choi, “Multiplex electrical detection of avian influenza and human immunodeficiency virus with an underlap-embedded silicon nanowire field-effect transistor,” Biosens. Bioelectron 55 (2014) 162-7.
[13] S. O. Belostotskaya, O. V. Chuyko, A. E. Kuznetsov, E. V. Kuznetsov, E. N. Rybachek, “Silicon nanowire structures as high–sensitive pH-sensors,” J. Phys. 345 (2012) 012008.
[14] T. Wu, A. Alharbi, K.D. You, K. Kisslinger, E. A. Stach, D Shahrjerdi, “Experimental study of the detection limit in dual-gate biosensors using ultrathin silicon transistors,” ACS Nano. 11 (2017) 7142−7147.
[15] W. Cheng, L. Yu, D. Kong, Z. Yu, H. Wang, Z. Ma, Y. Wang, J. Wang, L. Pan, and Y. Shi, “Fast-response and low-hysteresis flexible pressure sensor based on silicon nanowires,” IEEE Electron Device Lett. 39 (2018) 1069-1072.
[16] E. Garnett, P. Yang, “Light trapping in silicon nanowire solar cells,” Nano. Letters 10 (2010) 1082-1087.
[17] K. Peng, X. Wang, S.T. Lee, “Silicon nanowire array photoelectrochemical solar cells,” Appl. Phys. Lett. 92 (2008) 163103.
[18] F. Wang, Y. Zhang, M. Yang, L. Yang, Y. Sui, J. Yang, Y. Zhao, and X. Zhang, “Realization of 16.9% efficiency on nanowires heterojunction solar cells with dopant-free contact for bifacial polarities,” Adv. Funct. Mater. 28 (2018) 1805001.
[19] T. Song, L. Hu, U. Paik, “One-dimensional silicon nanostructures for Li ion batteries,” J. Phys. Chem. 5 (2014) 720−731.
[20] K. B. Kang, H. S. Lee, D. W. Han, G. S. Kim, D. H. Lee, “Maximum Li storage in Si nanowires for the high capacity three-dimensional Li-ion battery,” Appl. Phys. Lett. 96 (2010) 053110.
[21] H. C. Wu, H. Y. Tsai, H. T. Chiu, C. Y. Lee, “Silicon rice-straw array emitters and their superior electron field emission,” Appl. Mater. Interfaces 2 (2010) 3285-3288.
[22] Y. F. Tzeng, H. C. Wu, P. S. Sheng, N. H. Tai, H. T. Chiu, C. Y. Lee, and I. N. Lin, “Stacked Silicon Nanowires with Improved Field Enhancement Factor,” Appl. Mater. Interfaces 2 (2010) 331-334.
[23] H. C. Wu, T. Y. Tsai, F. F. Chu, N. H. Tai, H. N. Lin, H. T. Chiu, C. Y. Lee, “Electron field emission properties of nanomaterials on rough silicon rods,” J. Phys. Chem. 114 (2010) 130–133.
[24] F. Zhao, D. D. Zhao, S.L Wu, G.A Cheng, and R. T. Zheng, “Fabrication and electron field emission of silicon nanowires synthesized by chemical etching,” J Korean Phys Soc. 55 (2009) 2681-2684.
[25] V. Kumar, S. K. Saxena, V. Kaushik, K. Saxena, A. Shukla, and R. Kumar, “Silicon nanowires prepared by metal induced etching (MIE): good field emitters,” RSC Adv. 4 (2014) 57799-57803.
[26] R. Khare, M. A. More, and D. Chakravarty, “Transformation of ZnO nanorods into nanotubes and their field emission studies,” Modern Physics Letters B 29 (2015) 1540044.
[27] K. S. Hazra, T. Gigras, and D. Misra, “Tailoring the electrostatic screening effect during field emission from hollow multiwalled carbon nanotube pillars,” Appl. Phys. Lett. 98 (2011) 123116.
[28] Y. Monika, R. Kumar, R. P. Chauhan, R. Kumar, and S. K Chakarvarti, “Preparation and field emission study of low-dimensional ZnS arrays and tubules,” J. Exp. Nanosci. 10 (2015)126–134.
[29] S. Lv, Z. Li, J. Liao, Z. Zhang, and W. Miao, “Well-aligned NiSi/Si heterostructured nanowire arrays as field emitters,” J. Vac. Sci. Technol. B 33 (2015) 02B101.
[30] S. S. Choi, M. Y. Jung, M. S. Joo, D. W. Kim, M. J. Park, S. B. Kim, and H. T. Jeon, “Field emission study of titanium silicide array,” Surf. Interface Analy. 36 (2004) 435.
[31] C. F. Chuang and S. L. Cheng, “Fabrication and properties of well-ordered arrays of single-crystalline NiSi2 nanowires and epitaxial NiSi2/Si heterostructures,” Nano Research 7(11) (2014) 1592-1603.
[32] R. H. Fowler and L. W. Nordheim, “Electron emission in intense electric fields,” Royal Society of London A119 (1928) 173.
[33] C. H. Kuo, J. M. Wu and S. J. Lin, “Room temperature-synthesized vertically aligned InSb nanowires: electrical transport and field emission characteristics,” Nanoscale Res. Lett. 8 (2013) 69.
[34] T. Basu, M. Kumar, M. Saini, J. Ghatak, B. Satpati and T. Som, “Surfing silicon nanofacets for cold cathode electron emission sites,” ACS Appl. Mater. Interfaces 9 (2017) 38931.
[35] Y. Shen, N. S. Xu, P. Ye, Y. Zhang, F. Liu, J. Chen, J. She and S. Z. Deng, “An analytical modeling of field electron emission for a vertical wedged ordered nanostructure,” Adv. electron. mater. 3 (2017) 1700295.
[36] J. J. Niu, J.N. Wang, and N.S. Xu, “Field emission property of aligned and random SiC nanowires arrays synthesized by a simple vapor–solid reaction,” Solid State Sciences 10 (2008) 618-621.
[37] C. H. Kuo, J.-M. Wu, and S.-J. Lin, “Room temperature-synthesized vertically aligned InSb nanowires electrical transport and field emission characteristics,” Nanoscale Research Letters, 8 (2013) 69.
[38] L. Nilsson, O. Groaning, C. Emmenegger, O. Kuetell, E. Schaller, L. Schlapbach, H. Kind, J. M. Bonard and K. Kern, “Scanning field emission from patterned carbon nanotube films,” Appl. Phys. Lett. 76 (2000) 2071.
[39] Y. Shen, N. Xu, P. Ye, Y. Zhang, F. Liu, J. Chen, J. She, and S. Deng, “An analytical modeling of field electron emission for a vertical wedged ordered nanostructure,” Adv. Electron. Mater. 3 (2017) 1700295.
[40] U. Ray, D. Banerjee, B. Das, N.S. Das, S.K. Sinha, and K.K. Chattopadhyay, “Aspect ratio dependent cold cathode emission from vertically aligned hydrophobic silicon nanowires,” Mater. Res. Bull. 97 (2018) 232-237.
[41] S. Lv, Z. Li, C. Chen, J. Liao, G. Wang, M. Li and W. Miao, “Enhanced field emission performance of hierarchical ZnO/Si nanotrees with spatially branched heteroassemblies,” ACS Appl. Mater. Interfaces 7 (2015) 13564-13568.
[42] Z. J. Qian, X. Y. Liu, Y. Yang and Q. X. Yin, “Enhancing field emission performance of aligned Si nanowires via in situ partial oxidization,” J. Nanosci. Nanotechnol. 14 (2014) 6209-6212.
[43] S. L. Cheng, H. C. Lin, Y. H. Huang and S. C. Yang, “Fabrication of periodic arrays of needle-like Si nanowires on (001)Si and their enhanced field emission characteristics,” RSC Adv. 7 (2017) 23935-23941.
[44] W. Li, J. Zhou, X. G. Zhang, J. Xu, L. Xu1, W. M. Zhao, P. Sun, F. Q. Song, J. G. Wan, K. J. Chen, “Field emission from a periodic amorphous silicon pillar array fabricated by modified nanosphere lithography,” Nanotechnology 19 (2008) 135308.
[45] H. Y. Hsieh, S. H. Huang, K. F. Liao, S. K. Su, C. H. Lai, L. J. Chen, “High-density ordered triangular Si nanopillars with sharp tips and varied slopes: one-step fabrication and excellent field emission properties,” Nanotechnology 18 (2007) 505305.
[46] L. Xu, W. Li, J. Xu, J. Zhou, L. C. Wu, X. G. Zhang, Z. Y. Ma, K. J. Chen, “Morphology control and electron field emission properties of high-ordered Si nanoarrays fabricated by modified nanosphere lithography,” Appl. Surf. Sci. 255 (2009) 5414-5417.
[47] Y. M. Chang, P. H. Kao, H. M. Tai, H. W. Wang, C. M. Lin, H. Y. Leede, J. Y. Juang, “Enhanced field emission characteristics in metal-coated Si-nanocones,” Phys. Chem. Chem. Phys.15 (2013) 10761-10766.
[48] H. F. Hsu, J. Y. Wang, Y. H. Wu, “KOH etching for tuning diameter of Si nanowire arrays and their field emission characteristics,” J. Electrochem. Soc. 161(2014) H53-H56.
[49] W. D. Zhu, C. W. Wang, J. B. Chen, D. S. Li, F. Zhou and H. L. Zhang, “Enhanced field emission from hydrogenated TiO2 nanotube arrays,” Nanotechnology 23 (2012) 455204.
[50] S. Maity, N. S. Das and K. K. Chattopadhyay, “Controlled surface damage of amorphous and crystalline carbon nanotubes for enhanced field emission,” Phys. Status Solidi B 250 (2013) 1919-1925.
[51] S. G. Jang, H. K. Yu, D. G. Choi and S. M. Yang, “Controlled fabrication of hollow metal pillar arrays using colloidal masks,” Chem. Mater. 18 (2006) 6103-6105.
[52] Y. Agrawal, G. Kedawat, P. Kumar, J. Dwivedi, V. N. Singh, R. K. Gupta and B. K. Gupta, “High-performance stable field emission with ultralow turn on voltage from rGO conformal coated TiO2 nanotubes 3D arrays,” Sci. Rep. 5 (2015) 11612.
[53] S. C. Hung and Y. J. Chen, “Enhanced field emission properties of tilted graphene nanoribbons on aggregated TiO2 nanotube arrays,” Mater. Res. Bull. 79 (2016) 115–120.
[54] W. D. Zhu, C. W. Wang, J. B. Chen, Y. Li and J. Wang, “Enhanced field emission from Ti3+ self-doped TiO2 nanotube arrays synthesized by a facile cathodic reduction process,” Appl. Surf. Sci. 301 (2014) 525-529.
[55] X. P. Shen, A. H. Yuan, Y. M. Hu, Y. Jiang, Z. Xu and Z. Hu, “Fabrication, characterization and field emission properties of large-scale uniform ZnO nanotube arrays,” Nanotechnology 16 (2005) 2039-2043.
[56] A. Wei, X. W. Sun, C. X. Xu, Z. L. Dong, M. B. Yu and W. Huang, “Stable field emission from hydrothermally grown ZnO nanotubes,” Appl. Phys. Lett. 88 (2006) 213102.
[57] J. Yuan, H. Li, Q. Wang, X. Zhang, S. Cheng, H. Yu, X. Zhu and Y. Xie, “Facile fabrication of aligned SnO2 nanotube arrays and their field-emission property,” Mater. Lett. 118 (2014) 43-46.
[58] M. S. Wu, J. T. Lee, Y. Y. Wang and C. C. Wan, “Field emission from manganese oxide nanotubes synthesized by cyclic voltammetric electrodeposition,” 108 (2004) J. Phys. Chem. B 108 (2004) 16331-16333.
[59] X. Duan and C. M. Lieber. “General synthesis of compound semiconductor nanowires,” Adv. Mater. 12 (2000) 298.
[60] Y. Wang, M. Hegde, S. Chen, P. Yin, and P. V. Radovanovic. “Control of the spontaneous formation of oxide overlayers on gap nanowires grown by physical vapor deposition,” AIMS Mater. Sci. 5 (2018) 105-115.
[61] C. Brun, P. H. Elchinger, G. Nonglaton, C. Tidiane-Diagne, R. Tiron, A. Thuaire, D. Gasparutto, and X. Baillin. “Metallic conductive nanowires elaborated by PVD metal deposition on suspended DNA bundles,” Small. 13 (2017).
[62] M. Shariati and F. Khosravinejad. “The laser-assisted field effect transistor gas sensor based on morphological zinc-excited tin-doped In2O3 nanowires,” Surf. Rev. Lett. 24 (2017).
[63] J. S. Yu, H. S. Liu, X. G. Zhou, and H. L. Wang. “Growing SiC nanowires on modified SiC fibers surface via a chemical vapor deposition route,” IOP Conf. Ser.: Mater. Sci. Eng. 504 (2019).
[64] M. Zheng, Q. Jia, X. Liu, and G. Jia. “Synthesis of ultra-long aluminum nitride nanowires with excellent photoluminescent property by aluminum chloride assisted chemical vapor reaction technique,” Ceram. Int. 45 (2019) 12387-12392.
[65] Y. You, M. Mayyas, S. Xu, I. Mansuri, V. Gaikwad, P. Munroe, V. Sahajwalla, and R. K. Joshi. “Growth of NiO nanorods, SiC nanowires and monolayer graphene via a CVD method,” Green Chem. 19 (2017) 5599-5607.
[66] X. Li, N. Kim, S. Youn, T. K. An, J. Kim, S. Lim, and S. H. Kim. “Sol(-)gel-processed organic(-)inorganic hybrid for flexible conductive substrates based on gravure-printed silver nanowires and graphene,” Polymers. 11 (2019).
[67] H. Lin, H. Li, Q. Shen, X. Shi, X. Tian, and L. Guo. “Catalyst-free growth of high purity 3C-SiC nanowires film on a graphite paper by sol-gel and ICVI carbothermal reduction,” Mater. Lett. 212 (2018) 86-89.
[68] Y. R. Jo, S. H. Myeong, and B. J. Kim. “Role of annealing temperature on the sol–gel synthesis of VO2 nanowires with in situ characterization of their metal–insulator transition,” RSC Adv. 8 (2018) 5158-5165.
[69] M. Song, J. Lee, B. Wang, B. A. Legg, S. Hu, J. Chun, and D. Li. “In situ characterization of kinetics and mass transport of PbSe nanowire growth via LS and VLS mechanisms,” Nanoscale. 11 (2019) 5874-5878.
[70] H. J. Fan, P. Werner, and M. Zacharias. “Semiconductor nanowires: from self-organization to patterned growth,” Small. 2 (2006) 700-17.
[71] W. Lu and C. M. Lieber. “Semiconductor nanowires,” J. Phys. D: Appl. Phys. 39 (2006) R387-R406.
[72] T. Ishiyama, S. Nakagawa, T. Wakamatsu, and N. Fujiwara. “Synthesis of β-FeSi2 nanowires by using silicon nanowire templates,” AIP Adv. 8 (2018).
[73] M. P. Zach, K. H. Ng, and R. M. Penner. “Molybdenum nanowires by electrodeposition,” Sci. 290 (2000) 2120.
[74] M. P. Zach, K. Inazu, K. H. Ng, J. C. Hemminger, and R. M. Penner. “Synthesis of molybdenum nanowires with millimeter-scale lengths using electrochemical step edge decoration,” Chem. Mater. 14 (2002) 3206-3216.
[75] H. W. Shin and J. Y. Son. “Magnetic domain structure and magnetic anisotropy in ferromagnetic Y3Fe5O12 nanowires formed by step-edge decoration,” J. Magn. Magn. Mater. 444 (2017) 102-105.
[76] X. Zhu, J. Fan, Y. Zhang, H. Zhu, B. Dai, M. Yan, and Y. Ren. “Preparation of superparamagnetic and flexible γ-Fe2O3 nanowire arrays in an anodic aluminum oxide template,” J. Mater. Sci. 52 (2017) 12717-12723.
[77] J. E. Graves, M. E. A. Bowker, A. Summer, A. Greenwood, C. Ponce de León, and F. C. Walsh, “A new procedure for the template synthesis of metal nanowires,” Electrochem. Commun. 87 (2018) 58-62.
[78] K. Blagg, T. Greymountain, W. Kern, and M. Singh, “Template-based electrodeposition and characterization of niobium nanowires,” Electrochem. Commun. 101 (2019) 39-42.
[79] Q. Xu, G. Meng, and F. Han, “Porous AAO template-assisted rational synthesis of large-scale 1D hybrid and hierarchically branched nanoarchitectures,” Prog. Mater Sci. 95 (2018) 243-285.
[80] S. Kumar, T. W. Kang, P. Y. Khan, S. Kumar, M. Goyal, and R. K. Choubey, “Study of electroless template synthesized ZnSe nanowires and its characterization,” J. Mater. Sci. - Mater. Electron. 25 (2013) 957-961.
[81] T. Hussain, A. T. Shah, K. Shehzad, A. Mujahid, Z. H. Farooqi, M. H. Raza, M. N. Ahmed, and Z. U. Nisa, “Formation of self-ordered porous anodized alumina template for growing tungsten trioxide nanowires,” Int. Nano Lett. 5 (2014) 37-41.
[82] Y. Wang, S. Gong, D. Gomez, Y. Ling, L. W. Yap, G. P. Simon, and W. Cheng, “Unconventional janus properties of Enokitake-like gold nanowire films,” ACS Nano. 12 (2018) 8717-8722.
[83] N. Dadvand and G. J. Kipouros, “Electroless fabrication of cobalt alloys nanowires within alumina template,” J. Nanomater. 2007 (2007) 1-6.
[84] L. Gu, D. Zhang, M. Kam, Q. Zhang, S. Poddar, Y. Fu, X. Mo, and Z. Fan, “Significantly improved black phase stability of FAPbI3 nanowires via spatially confined vapor phase growth in nanoporous templates,” Nanoscale. 10 (2018) 15164-15172.
[85] S. Sanjay, P. Kandasamy, S. Singh, and K. Baskar, “Growth and characterization of gallium nitride nanowires on nickel/sapphire template by chemical vapour deposition”, The Physics of Semiconductor Devices. (2019) 249-254.
[86] J. Zhang, L. Jin, S. Li, J. Xie, F. Yang, J. Duan, T.-H. Shen, and H. Wang. “Fabrication of two types of ordered inp nanowire arrays on a single anodic aluminum oxide template and its application in solar cells,” J. Mater. Sci. Technol. 31 (2015) 634-638.
[87] J. Guiliani, J. Cadena, and C. Monton. “Template-assisted electrodeposition of Ni and Ni/Au nanowires on planar and curved substrates,” Nanotechnology. 29 (2018) 075301.
[88] H. Zhang, W. Jia, H. Sun, L. Guo, and J. Sun. “Growth mechanism and magnetic properties of Co nanowire arrays by AC electrodeposition,” J. Magn. Magn. Mater. 468 (2018) 188-192.
[89] P. G. Schiavi, A. Rubino, P. Altimari, and F. Pagnanelli, Two electrodeposition strategies for the morphology-controlled synthesis of cobalt nanostructures, in AIP Conf. Proc (2018) 020005.
[90] M. I. Irshad, F. Ahmad, N. M. Mohamed, and M. Z. Abdullah. “Preparation and structural characterization of template assisted electrodeposited copper nanowires,” Int. J. Electrochem. Sci. 9 (2014) 2548 - 2555.
[91] T. Mochizuki, T. Tsujimaru, M. K. Agi, and Y. Nishi, “Film Properties of MoSi2 and their application to self-aligned MoSi2 gate MOSFET,” IEEE JSSC SC-15 (1980) 4.
[92] J. B. Lasky, J. S. Nakos, O. J. Cain, and P. J. Geiss, “Comparison of transformation to low-resistivity phase and agglomeration of TiSi, and COS,” IEEE T-ED. 38 (1991) 2 .
[93] H.F. Hsua, H.Y. Chana, T.H. Chena, H.Y. Wua, S.L. Chengb, F.B. Wuc, “Epitaxial growth of uniform NiSi2 layers with atomically flat silicide/Si interface by solid-phase reaction in Ni–P/Si(1 0 0) systems,” Appl. Surf. Sci. 257 (2011) 7422-7426.
[94] J. Lu, X. Gao, S. L. Zhang, and L. Hultman, “Crystallization of NiSix in a body-centered cubic structure during solid-state reaction between an ultrathin Ni film and Si(001) Substrate at 150−350 °C,” Cryst. Growth Des. 13 (2013) 1801-1806.
[95] D. Connetablea, O. Thomasb, “First-principles study of nickel-silicides ordered phases,” J. Alloys Compd. 509 (2011) 2639-2644.
[96] H. Iwaia , T. Ohgurob, S. I. Ohmia, “NiSi salicide technology for scaled CMOS,” Microelectronic Eng. 60 (2002) 157-169.
[97] Y. Wu1, J. Xiang, C. Yang, W. Lu ,and C. M. Lieber, “Single-crystal metallic nanowires and metal/semiconductor nanowire heterostructures,” Nature 430 (2004) 1.
[98] G.F. Iriarte, “Growth of nickel silicide (NiSix) nanowires by silane decomposition,” Current Applied Physics 11 (2011) 82-86.
[99] N. F. F. B. Nazarudin, S. N. A. B. Azizan, S. A. Rahman, B. T. Goh, “Growth and structural property studies on NiSi/SiC core-shell nanowires by hot-wire chemical vapor deposition,” Thin Solid Films xxx (2014) xxx–xxx.
[100] H. F. Hsu, C. H. Tseng, and T. H. Chen, “Formation of epitaxial NiSi2 nanowires on Si(100) surface by atomic force microscope nanolithography,” J. Nanosci. Nanotechnol. 10 (2010) 4533-4537.
[101] S. Lee, J. Yoon, B. Koo, D. H. Shin, J. H. Koo, C. J. Lee, Y. W. Kim, H. Kim, T. Lee, “Formation of vertically aligned cobalt silicide nanowire arrays through a solid-state reaction,” IEEE Trans Nanotechnol 12 (2013).
[102] Y. W. Ok, T. Y. Seong, C. J. Choi, and K. N. Tu, “Field emission from Ni-disilicide nanorods formed by using implantation of Ni in Si coupled with laser annealing,” Appl. Phys. Lett. 13 (2013)717.
[103] J. D. Kim, E. S. Lee, C. S. Han, Y. J. Kang, D. J. Kim, and W. A. Anderson, “Observation of Ni silicide formations and field emission properties of Ni silicide nanowires,” Microelectron Eng. 85 (2008) 1709.
[104] C. Y. Lee, M. P. Lu, K. F. Liao, W. F. Lee, C. T. Huang, S. Y. Chen, and L. J. Chen, “Free-standing single-crystal NiSi2 nanowires with excellent electrical transport and field emission properties,” J. Phys. Chem. C 113 (2009) 2286.
[105] C. J. Kim, K. Kang, Y. S. Woo, K. G. Ryu, H. Moon, J. M. Kim, D. S. Zang, and M. H. Jo, “Spontaneous chemical vapor growth of NiSi nanowires and their metallic properties” Advanced Materials 19 (2007) 3637.
[106] Z. H. Liu, H. Zhang, L. Wang, and D. Yang, “Controlling the growth and field emission properties of silicide nanowire arrays by direct silicification of Ni foil” Nanotechnology 19 (2008) 375602.
[107] C. Y. Lee, M. P. Lu, K. F. Liao, W. W. Wu, and L. J. Chen, “Vertically well-aligned epitaxial Ni 31 Si 12 nanowire arrays with excellent field emission properties” Appl. Phys. Lett. 93 (2008) 113109.
[108] C. Y. Liu, W. S. Li, L. W. Chu, M. Y. Lu, C. J. Tsai, and L. J. Chen, “An ordered Si nanowire with NiSi2 tip arrays as excellent field emitters,” Nanotechnology 22 (2010) 055603.
[109] C. F. Chuang and S. L. Cheng, “Fabrication and properties of well-ordered arrays of single-crystalline NiSi2 nanowires and epitaxial NiSi2/Si heterostructures,” Nano Research 7 (2014) 1592.
[110] S. S. Lv, Z. C. Li, J. C. Liao, Z. J. Zhang, and W. Miao, “Well-aligned NiSi/Si heterostructured nanowire arrays as field emitters” Journal of Vacuum Science & Technology B 24 (2014) 1949.
[111] A. Kosloff, E. Granot, Z. Barkay, and F. Patolsky, “Controlled formation of radial core−shell Si/metal silicide crystalline heterostructures,” Nano. Lett. 18 (2018) 70−80.
[112] F. T., N. Li, D. Xu, D. Xiao, X. Yang and N. Lu, “Precise regulation of tilt angle of Si nanostructures via metal-assisted chemical etching,” Nanoscale 9 (2017) 449-453.
[113] T. L. Court and M. F. A. Dove, “Fluorine compounds of Nickel(rii),” J. Chem. Soc., Dalton Trans. (1973) 1995-1997.
[114] T. Hosoya, Y. Ozaki, and K. Hirata, “Effects of wet cleaning on Si contaminated with heavy metals during reactive ion etching,” J. Electrochem. Soc. 132 (1985) 2436-2439.
[115] J.L. Duan, D.Y. Lei, F. Chen, S. P. Lau, W. I. Milne, M. E. Toimil-Molares, C. Trautmann, J Liu, “Vertically-aligned single-crystal nanocone arrays: controlled fabrication and enhanced field emission,” ACS Appl. Mater. Interfaces 8 (2016) 472−479.
[116] C. Kim, W. Gu, M. Briceno, I. M. Robertson, H. Choi, K. Kim, “Copper nanowires with a five‐twinned structure grown by chemical vapor deposition,” Adv. Mater 20 (2008) 1859–1863.
[117] I. C. Chang, T. K. Huang, H. K. Lin, Y. F. Tzeng, C. W. Peng, F. M. Pan, C.Y. Lee, H.T. Chiu, “Growth of pagoda-topped tetragonal copper nanopillar arrays,” ACS Appl. Mater. Interfaces 7 (2009) 1375–1378.
[118] P. Serbun, F. Jordan, A. Navitski, G. Müller, I. Alber, M. E. Toimil-Molares and C. Trautmann, “Copper nanocones grown in polymer ion-track membranes as field emitters,” Ur. Phys. J. Appl. Phys. 58 (2012) 10402.
[119] J. Joo, S. J. Lee, D. H. Park, Y. S. Kim, Y. Lee, C. J. Lee and S. R. Lee, “Field emission characteristics of electrochemically synthesized nickel nanowires with oxygen plasma post-treatment,” Nanotechnology 17 (2006) 3506–3511.
[120] T. Hang, H. Ling, A. Hu, and M. Li, “Growth mechanism and field emission properties of nickel nanocones array fabricated by one-Step electrodeposition,” J. Electrochem. Soc. 157 (2010) 624-627.
[121] J. Wang, L. Wei, L. Zhang, J. Zhang, H. Wei, C. Jiang and Y. Zhang, “Controlled growth of nickel nanocrystal arrays and their field electron emission performance enhancement via removing adsorbed gas molecules,” CrystEngComm 15 (2013) 1296-1306.
[122] S. Wang, Y. He, X. Fang, J. Zou, Y. Wang, H. Huang, P. M. F. J. Costa, M. Song, B. Huang, C. T. Liu, P. K. Liaw, Y. Bando, and D. Golberg, “Structure and field-emission properties of sub-micrometer-sized tungsten-whisker arrays fabricated by vapor deposition,” Adv. Mater 21 (2009) 2387-2392.
[123] Y. Baek, Y. Song, K. Yong, “A novel heteronanostructure system: hierarchical W nanothorn arrays on WO3 nanowhiskers,” Adv. Mater. 18 (2006) 3105-3110.
[124] C. Trautmann, S. Karim, “Efficient field emission from structured gold nanowire cathodes,” Eur. Phys. J. Appl. Phys. 48 (2009) 30502.
[125] T. Kim, J. Kim, S. J. Son, S. Seo, “Gold nanocones fabricated by nanotransfer printing and their application for field emission,” Nanotechnology 19 (2008) 295302.
[126] L. Vila, P. Vincent, G. Pirio, E. Minoux, L. Gangloff, S. Demoustier-Champagne, N. Sarazin, E. Ferain, R. Legras, L. Piraux, P. Legagneux, “Growth and field-emission properties of vertically aligned cobalt nanowire arrays,” Nano Lett 4 (2004) 521-524.
[127] I. Chakraborty, P. Ayyub, “Controlled clustering in metal nanorod arrays leads to strongly enhanced field emission characteristics,” Nanotechnology 23 (2012) 015704. |