參考文獻 |
[1] P. Friedlingstein, M. W. Jones, M. O’Sullivan, R. M. Andrew, J. Hauck, G. P. Peters, W. Peters, J. Pongratz, S. Sitch, C. Le Qu´er´e, D. C. E. Bakker, J. G. Canadell, P. Ciais, R. B. Jackson, P. Anthoni, L. Barbero, A. Bastos, V. Bastrikov, M. Becker, L. Bopp, E. Buitenhuis, N. Chandra, F. Chevallier, L. P. Chini, K. I. Currie, R. A. Feely, M. Gehlen, D. Gilfillan, T. Gkritzalis, D. S. Goll, N. Gruber, S. Gutekunst, I. Harris, V. Haverd, R. A. Houghton, G. Hurtt, T. Ilyina, A. K. Jain, E. Joetzjer, J. O. Kaplan, E. Kato, K. Klein Goldewijk, J. I. Korsbakken, P. Landsch¨utzer, S. K. Lauvset, N. Lef`evre, A. Lenton, S. Lienert, D. Lombardozzi, G. Marland, P. C. McGuire, J. R. Melton, N. Metzl, D. R. Munro, J. E. M. S. Nabel, S.-I. Nakaoka, C. Neill, A. M. Omar, T. Ono, A. Peregon, D. Pierrot, B. Poulter, G. Rehder, L. Resplandy, E. Robertson, C. R¨odenbeck, R. S´ef´erian, J. Schwinger, N. Smith, P. P. Tans, H. Tian, B. Tilbrook, F. N. Tubiello, G. R. van der Werf, A. J. Wiltshire, and S. Zaehle, Global Carbon Budget 2019, Earth System Science Data, vol. 11, pp. 1783–1838, 2019.
[2] IEA(2020), Global CO2 emissions in 2019, IEA, Paris, 2019.
[3] 台灣電力股份有限公司,https://www.taipower.com.tw/tc/page.aspx?mid=216, 2019。
[4] 李元亨,〈什麼是碳捕存(CCS)? 原理及重要性〉, https://scitechvista.nat.gov.tw/c/sffl.htm, 2017。
[5] 楊閎舜、周正堂,〈變壓吸附程序在二氧化碳捕獲技術之展與研究〉,化工, 63卷1期,頁 83-97,2016。
[6] 張育誠、吳國光、焦鴻文、簡國祥、歐陽湘,〈富氧燃燒技術之應用與分析〉,台灣能源期刊,第2卷3期,頁323-331,2015。
[7] M. Zaman and J. H. Lee, Carbon Capture from Stationary Power Generation Sources: A Review of the Current Status of the Technologies, Korean Journal Chemical Engineering, vol. 30, pp. 1497-1526, 2013.
[8] A. Agarwal, Advanced Strategies for Optimal Design and Operation of Pressure Swing Adsorption Processes, Pittsburgh: Carnegie Mellon University, 2010.
[9] R. T. Yang, Gas Seperation by Adsorption Process, vol. 1, London: Imperial College Press, 1997.
[10] S. U. Rege and R. T. Yang, A Simple Parameter for Seleciton an Adsorbent for Gas Separation by Pressure Swing Adsorption, Separation Science and Technology, vol. 36(15), pp. 3355-3365, 2001.
[11] C. W. Skarstrom, Esso Research and Engineering Company, U.S. Patent no.2944627, 1960.
[12] A. E. Rodrigues, M. D. LeVan, and D. Tondeur, Adsorption: Science and Technology, Kluwer, 1988.
[13] W. Choi, T. Kwon, and Y. Yeo, Optimal Operation of the Pressure Swing Adsorption (PSA) Process, Korean Journal Chemical Engineering, vol. 20, pp. 617-623, 2003.
[14] P. E. Jahromi, S. Fatemi, A.Vatani, J.A. Ritter, and A. D. Ebner, Purification of Helium from a Cryogenic Natural Gas Nitrogen Rejection Unit by Pressure Swing Adsorption, Separation and Purification Technology, vol. 193, pp. 91-102, 2018.
[15] P. G. de Montgareuil and D. Domine, Process for Separating a Binary Gaseous Mixture by Adsorption, U.S. Patent no.3155468, 1964.
[16] B. K. Na, H. L. Lee, K. K. Koo, and H. K. Song, Effect of Rinse and Recycle Methods on the Pressure Swing Adsorption Process to Recover CO2 from Power Plant Flue Gas Using Activated Carbon, Industrial & Engineering Chemistry Research, vol. 41, pp. 5498-5503, 2002.
[17] K. Chihara and M. Suzuki, Air Drying by Pressure Swing Adsorption, Journal of Chemical Engineering of Japan, vol. 16, pp. 293-299, 1983.
[18] J. J. Collins, Air Separation by Adsorption, U.S. Patent no.4026680, 1975.
[19] S. J. Doong and R. T. Yang, Hydrogen Purification by the Multibed Pressure Swing Adsorption Process, Reactive Polymers, vol. 6, pp. 7-13, 1987.
[20] L. Jiang, V.G. Fox, and L.T. Biegler, Simulation and Optimal Design of Multiple-Bed Pressure Swing Adsorption Systems, AIChE Journal, vol. 50, pp. 2904-2914, 2004.
[21] E. Rudelstorfer and A. Fuderer, Selective Adsorption Process, U.S. Patent no.3986849, 1976.
[22] P. H. Turnock and R. H. Kadlec, Separation of Nitrogen and Methane via Periodic Adsorption, AIChE Journal, vol. 17, pp. 335-342, 1971.
[23] R.T. Yang and S. J. Doong, Gas Separation by Pressure Swing Adsorption: A Pore-Diffusion Model for Bulk Separation, AIChE Journal, vol. 31, pp. 1829-1842, 1985.
[24] S. Farooq and D. M. Ruthven, A Comparison of Linear Driving Force and Pore Diffusion Models for a Pressure Swing Adsorption Bulk Separation Process, Chemical Engineering Science, vol. 45, pp. 107-115, 1990.
[25] E. Glueckauf and J. I. Coates, Theory of Chromatography. part IV. the Influence of Incomplete Equilibrium on the Front Boundary of Chromatograms and on the Effectiveness of Separation, Journal of the Chemical Society, pp. 1315-1321, 1947.
[26] L. Wang, Y. Yang, W. Shen, X. Kong, P. Li, J. Yu , and A. E. Rodrigues, Experimental Evaluation of Adsorption Technology for CO2 Capture, Chemical Engineering Science, vol. 101, pp. 615-619, 2013.
[27] H. Erden, A. D. Ebner, and J. A. Ritter, Development of a Pressure Swing Adsorption Cycle for Producing High Purity CO2 from Dilute Feed Streams. Part I: Feasibility Study, Industrial & Engineering Chemistry Research, vol. 57, pp. 8011-8022, 2018.
[28] Z. Liu, L. Wang, X. M. Kong, P. Li, J. Yu, and A. E. Rodrigues, Onsite CO2 Capture from Flue Gas by an Adsorption Process in a Coal-Fired Power Plant, Industrial & Engineering Chemistry Research, vol. 51, pp. 7355-7363, 2012.
[29] J. H. Ling, P. Xiao, A. Ntiamoah, D. Xu, P. Webley, Y. C. Zhai, Strategies for CO2 Capture from Different CO2 Emission Sources by Vacuum Swing Adsorption Technology, Chinese Journal of Chemical Engineering, vol. 24, pp.460-467, 2016.
[30] L. Wang, Y. Yang, W. L. Shen, X. M. Kong, P. Li, J. Yu and A. E. Rodrigues, CO2 Capture from Flue Gas in an Existing Coal-Fired Power Plant by Two Successive Pilot-Scale VPSA Units, Industrial & Engineering Chemistry Research, vol. 52, pp. 7947-7955, 2013.
[31] D. Wawrzyńczak, I. Majchrzak-Kucęba, K. Srokosz, M. Kozak, W. Nowak, J. Zdeb, W. Smółka, and A. Zajchowski, The Pilot Dual-Reflux Vacuum Pressure Swing Adsorption Unit for CO2 Capture from Flue Gas, Separation and Purification Technology, vol. 209, pp. 560-570, 2019.
[32] J. Zhang, P. A. Webley, and P. Xiao, Effect of Process Parameters on Power Requirements of Vacuum Swing Adsorption Technology for CO2 Capture From Flue Gas, Energy Conversion and Management, vol. 49, pp. 346-356, 2008.
[33] P. Xiao, J. Zhang, P. Webley, G. Li, R. Singh, and R. Todd, Capture of CO2 From Flue Gas Streams with Zeolite 13X by Vacuum Pressure Swing Adsorption, Adsorption, vol. 14, pp. 575–582 , 2008.
[34] J. A. Delgado, M. A. Uguina, J. L. Sotelo, V. I. Águeda, A. Sanz, and P. Gómez, Numerical Analysis of CO2 Concentration and Recovery From Flue Gas by a Novel Vacuum Swing Adsorption Cycle, Computers & Chemical Engineering, vol. 35, pp. 1010-1019, 2011.
[35] M. Alibolandi, S. M. Sadrameli, F. Rezaee, and J. T. Darian, Separation of CO2/N2 Mixture by Vacuum Pressure Swing Adsorption (VPSA) Using Zeolite 13X Type and Carbon Molecular Sieve Adsorbents, Heat Mass Transfer, vol. 56, pp. 1985–1994, 2020.
[36] J. H. Park, H. T. Beum, Jg. N. Kim, and S. H. Cho, Numerical Analysis on the Power Consumption of the PSA Process, Industrial & Engineering Chemistry Research, vol. 41, pp. 4122-4131, 2002.
[37] C.T. Chou and C.Y. Chen, Carbon Dioxide Recovery by Vacuum Swing Adsorption, Separation and Purification Technology, no. 39, pp. 51-65, 2004.
[38] D. D. Do, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, 1998.
[39] C. Y. Wen and L. T. Fan, Models for Flow Systems and Chemical Reactors, New York: Dekker, 1975.
[40] R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, 2nd ed., New Jersey: Wiley, 2007.
[41] E. N. Fuller, P. D. Schettler, and J. C. Giddings, A Comparison of Methods for Predicting Gaseous Diffusion Coefficients, Journal of Chromatography, vol. 3, pp. 222-227, 1965.
[42] E. N. Fuller, K. Ensley, and J. C. Giddings, Diffusion of Halogenated Hydrocarbons in Helium. The Effect of Structure on Collision Cross Sections, The Journal of Physical Chemistry, vol. 73, pp. 3679-3685, 1969.
[43] D. F. Fairbanks, and C.R. Wilke, Diffusion Coefficients in Multicomponent Gas Mixtures, Industrial & Engineering Chemistry, vol. 42, pp. 471-475, 1950.
[44] W. L. McCabe, J. C. Smith, and P. Harriott, Unit Operations of Chemical Engineering, 7th ed., New York: McGraw-Hill, 2005.
[45] W. H. McAdams, Heat Transmission, 3rd ed., New York: McGraw-Hill, 1954.
[46] S. Farooq, and D. M. Ruthven, Heat Effects in Adsorption Column Dynamics. 2. Experimental Validation of Theone-Dimensional Model, Industrial & Engineering Chemistry Research, vol. 29, pp. 1084-1090, 1990.
[47] N. Wakao, S. Kaguei, and T. Funazkri, Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients In Packed Beds: Correlation of Nusselt Numbers, Chemical Engineering Science, vol. 34, pp. 325-336, 1979.
[48] G. Carta, and A. Cincotti, Film Model Approximation Fornon-Linear Adsorption and Diffusion in Spherical Particles, Chemical Engineering Science, vol. 53, pp. 3483-3488, 1998.
[49] J. Karger, D. M. Ruthven, and J. Wiley, Diffusion in Zeolites and Other Microporous Solids, New Jersey: Wiley, 2008.
[50] M. D. LeVan, G. Carta, and C. M. Yon, Adsorption and Ion Exchange, in Perry′s Chemical Engineers′ Handbook, 7th ed., New York: McGrawHill, 1997.
[51] K. Kawazoe, M. Suzuki, K. Chihara, Chromatographic Study of Diffusion in Molecular-Sieving Carbon., Journal of Chemical Engineering of Japan, vol. 7, pp. 151-157, 1974.
[52] H. Qinglin, S. M. Sundaram, and S. Farooq, Revisiting Transport of Gases in the Micropores of Carbon Molecularsieves, Langmuir, vol. 19, pp. 393-405, 2003.
[53] X. Hu, E. Mangano, D. Friedrich, H. Ahn, and S. Brandani, Diffusion Mechanism of CO2 in 13X Zeolite Beads, Adsorption, vol. 20, pp. 121-135, 2014.
[54] P. V. Danckwerts, Continuous Flow Systems: Distribution of Residence, Chemical Engineering Science, vol. 2, pp. 1-13, 1953.
[55] 李念祖,《利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗》,碩士論文,國立中央大學化學工程與材料工程學系,2015。
[56] J. M. Smith, and H. C. Ness, Introduction to Chemical Engineering Thermodynamics, 4th ed., New York: McGraw Hill, 1987.
[57] 郭家禎,《利用三塔式真空變壓吸附法捕獲燃煤電廠煙道氣中二氧化碳之實驗研究》,碩士論文,國立中央大學化學工程與材料工程學系,2020。
[58] 鄭筑勻,《以變壓吸附法捕獲發電廠煙道氣中二氧化碳之模擬研究與實驗設計分析》,碩士論文,國立中央大學化學工程與材料工程學系,2019。
[59] A. Golmakani, S. Fatemi, and J. Tamnanloo, CO2 Capture From the Tail Gas of Hydrogen Purification Unit by Vacuum Swing Adsorption Process, Using SAPO-34, Industrial & Engineering Chemistry Research, vol. 55, pp. 334-350, 2016.
[60] R. C. Patel and C. J. Karamchandani, Elements of Heat Engines, 8th ed, Vadodara: Acharya, 1997.
[61] K. Kamatani, "Efficient Strategy for the Markov Chain Monte Carlo in High-Dimension with Heavy-Tailed Target Probability Distribution," Bernoulli, vol. 24, no. 4B, pp. 3711-3750, 2018. |