博碩士論文 107324038 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:26 、訪客IP:18.188.245.152
姓名 張鈞翔(Chun-Hsiang Chang)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 利用真空變壓吸附法捕獲發電廠煙道氣中二氧化碳之三塔實驗設計分析模擬研究
相關論文
★ 以模擬設計開發濕法回收氧化鎵中樹脂吸脫附鎵離子之商業化程序★ 利用真空變壓吸附法純化生質沼氣之模擬暨實驗設計研究
★ 改善三塔真空變壓吸附程序捕獲煙道氣中二氧化碳之實驗設計分析
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 碳的捕獲及封存是全球應對氣候變化的重要方法,可利用變壓吸附法捕獲煙道氣中二氧化碳,變壓吸附法為利用吸附劑對混合氣體中各成分之不同吸附選擇性來分離氣體的一種連續循環程序技術,本研究目的為捕獲燃煤電廠煙道氣中二氧化碳,使塔底產物二氧化碳達到純度95 %以上及回收率90 %以上。
以台中電廠再生吸附劑方法量測二氧化碳及氮氣對EIKME沸石13X的平衡吸附量得到修正因子f_(q_m )來調整等溫吸附模型所需參數後,藉由單塔三步驟程序捕獲燃煤電廠煙道氣實驗與模擬結果進行驗證,確認模擬程式的可靠性。
接著利用高壓吸附、同向減壓、兩次壓力平衡、真空脫附之變壓吸附三塔九步驟變壓吸附程序模擬,探討塔底二氧化碳純度及回收率變化。為了有效找出最佳操作條件,利用實驗設計(Design of Experiments, DOE),以經除硫、除水後之12.69 %二氧化碳與87.31 %氮氣的煙道氣為進料,計算出最適化所需之操作條件,當進料壓力3.85 atm、抽真空壓力0.05 atm、同向減壓壓力0.2 atm、塔長60公分、步驟1/4/7時間400秒、步驟2/5/8時間209秒及步驟3/6/9時間120秒的操作條件下,能得到塔底產物二氧化碳純度96.16 %及回收率91.28%,能耗為1.11 GJ/t-CO2的最適化結果。
摘要(英) Carbon capture and storage is an important method for global commitment to tackle climate change, and here pressure swing adsorption process (PSA) is used to capture carbon dioxide from flue gas in a thermal power plan. Pressure swing adsorption (PSA) is a cyclic process to separate gas mixtures based on the difference of adsorption capacity of each component on adsorbent. This study aims to capture carbon dioxide from flue gas of coal-fired power plant by PSA process for bottom product CO2 purity 95 % and recovery 90 %.
In order to obtain the correction factor (f_(q_m )) to modify the parameters of the extended Langmuir-Freundlich isotherm adsorption model, The equilibrium adsorption capacity of carbon dioxide and nitrogen on zeolite 13X was measured by the adsorbent regeneration method at Taichung coal-fired Power Plant. Then, the simulation is verified with experiments of 1-bed 3-step PSA process.
Next, the 3-bed 9-step PSA process is used with adsorption, cocurrent depressurization, vacuum, and twice pressure equalization to sperate flue gas (12.69 % CO2, 87.31 % N2) after desulphurization and water removal of Taichung coal-fired power plant.
Finally, in order to find the optimal operating conditions, this study combined the simulation of 3-bed 9-step PSA process with design of experiments (DOE) method. After simulation analysis, the bottom product CO2 purity is 96.16 % with 91.28 % recovery while at feed pressure 3.85 atm, vacuum pressure 0.05 atm, cocurrent depressurization 0.2 atm, bed length 60 cm, step 1/4/7 time 400 s, step 2/5/8 time 209 s, and step 3/6/9 time 120 s as the optimal results. The mechanical energy consumption was estimated to be 1.11 GJ/t-CO2.
關鍵字(中) ★ 變壓吸附
★ 二氧化碳
★ 碳捕獲
★ 煙道氣
關鍵字(英)
論文目次 目錄
摘要 i
ABSTRACT ii
誌謝 iv
目錄 v
圖目錄 ix
表目錄 xi
第一章、緒論 1
第二章、簡介及文獻回顧 5
2-1 吸附之簡介 5
2-1-1 吸附基本原理 5
2-1-2 吸附劑與其選擇性 7
2-2 文獻回顧 9
2-2-1 PSA程序之發展與改進 9
2-2-2 理論之回顧 14
2-3文獻回顧與研究目的 16
2-3-1 研究目的 16
2-3-2 變壓吸附程序純化二氧化碳之應用 18
第三章、理論 23
3-1基本假設 24
3-2統制方程式 25
3-3吸附平衡關係式 30
3-3-1 等溫吸附平衡關係式 30
3-3-2 質傳驅動力模式(Driving force model) 31
3-3-3 吸附熱關係式 31
3-4參數推導 32
3-4-1軸向分散係數(Axial dispersion coefficient) 32
3-4-2 熱傳係數 35
3-4-3線性驅動力質傳係數(Mass transfer coefficient of linear driving force) 38
3-5邊界條件與流速 42
3-5-1 邊界條件與節點流速 42
3-5-2閥公式 43
3-6求解步驟 44
第四章、等溫平衡吸附曲線與突破曲線 47
4-1吸附平衡 48
4-1-1 氣體與吸附劑性質 48
4-1-2等溫平衡吸附曲線(Adsorption equilibriem isotherm ) 50
4-1-3 修正等溫平衡吸附曲線之參數 53
4-2吸附動力學 56
4-2-1突破曲線 56
4-2-2台中規模吸附塔之突破曲線模擬驗證 58
第五章、製程描述 61
5-1單塔三步驟變壓吸附程序 62
5-2 不同三塔九步驟變壓吸附程序 64
5-3 能耗及產率計算公式 71
第六章、數據分析與結果討論 72
6-1 單塔三步驟變壓吸附法捕獲煙道氣中二氧化碳之驗證 74
6-2 不同三塔九步驟變壓吸附程序捕獲煙道氣中二氧化碳之模擬 79
6-3 Process D三塔九步驟變壓吸附法捕獲煙道氣中二氧化碳之驗證 91
96-4 燃煤電廠煙道氣三塔九步驟變壓吸附程序之模擬結果 95
6-5燃煤電廠煙道氣三塔九步驟變壓吸附程序模擬之實驗設計分析 97
6-5-1 殘差分析圖(Analysis of residual plots) 98
6-5-2 變異數分析(Analysis of Variance, ANOVA) 101
6-5-3 迴歸分析( Regression analysis )及最適化結果 107
第七章、結論 114
符號說明 117
參考文獻 122
附錄A、流速之估算方法 127
附錄B、無因次化迴歸模型係數 131
參考文獻 [1] P. Friedlingstein, M. W. Jones, M. O’Sullivan, R. M. Andrew, J. Hauck, G. P. Peters, W. Peters, J. Pongratz, S. Sitch, C. Le Qu´er´e, D. C. E. Bakker, J. G. Canadell, P. Ciais, R. B. Jackson, P. Anthoni, L. Barbero, A. Bastos, V. Bastrikov, M. Becker, L. Bopp, E. Buitenhuis, N. Chandra, F. Chevallier, L. P. Chini, K. I. Currie, R. A. Feely, M. Gehlen, D. Gilfillan, T. Gkritzalis, D. S. Goll, N. Gruber, S. Gutekunst, I. Harris, V. Haverd, R. A. Houghton, G. Hurtt, T. Ilyina, A. K. Jain, E. Joetzjer, J. O. Kaplan, E. Kato, K. Klein Goldewijk, J. I. Korsbakken, P. Landsch¨utzer, S. K. Lauvset, N. Lef`evre, A. Lenton, S. Lienert, D. Lombardozzi, G. Marland, P. C. McGuire, J. R. Melton, N. Metzl, D. R. Munro, J. E. M. S. Nabel, S.-I. Nakaoka, C. Neill, A. M. Omar, T. Ono, A. Peregon, D. Pierrot, B. Poulter, G. Rehder, L. Resplandy, E. Robertson, C. R¨odenbeck, R. S´ef´erian, J. Schwinger, N. Smith, P. P. Tans, H. Tian, B. Tilbrook, F. N. Tubiello, G. R. van der Werf, A. J. Wiltshire, and S. Zaehle, Global Carbon Budget 2019, Earth System Science Data, vol. 11, pp. 1783–1838, 2019.
[2] IEA(2020), Global CO2 emissions in 2019, IEA, Paris, 2019.
[3] 台灣電力股份有限公司,https://www.taipower.com.tw/tc/page.aspx?mid=216, 2019。
[4] 李元亨,〈什麼是碳捕存(CCS)? 原理及重要性〉, https://scitechvista.nat.gov.tw/c/sffl.htm, 2017。
[5] 楊閎舜、周正堂,〈變壓吸附程序在二氧化碳捕獲技術之展與研究〉,化工, 63卷1期,頁 83-97,2016。
[6] 張育誠、吳國光、焦鴻文、簡國祥、歐陽湘,〈富氧燃燒技術之應用與分析〉,台灣能源期刊,第2卷3期,頁323-331,2015。
[7] M. Zaman and J. H. Lee, Carbon Capture from Stationary Power Generation Sources: A Review of the Current Status of the Technologies, Korean Journal Chemical Engineering, vol. 30, pp. 1497-1526, 2013.
[8] A. Agarwal, Advanced Strategies for Optimal Design and Operation of Pressure Swing Adsorption Processes, Pittsburgh: Carnegie Mellon University, 2010.
[9] R. T. Yang, Gas Seperation by Adsorption Process, vol. 1, London: Imperial College Press, 1997.
[10] S. U. Rege and R. T. Yang, A Simple Parameter for Seleciton an Adsorbent for Gas Separation by Pressure Swing Adsorption, Separation Science and Technology, vol. 36(15), pp. 3355-3365, 2001.
[11] C. W. Skarstrom, Esso Research and Engineering Company, U.S. Patent no.2944627, 1960.
[12] A. E. Rodrigues, M. D. LeVan, and D. Tondeur, Adsorption: Science and Technology, Kluwer, 1988.
[13] W. Choi, T. Kwon, and Y. Yeo, Optimal Operation of the Pressure Swing Adsorption (PSA) Process, Korean Journal Chemical Engineering, vol. 20, pp. 617-623, 2003.
[14] P. E. Jahromi, S. Fatemi, A.Vatani, J.A. Ritter, and A. D. Ebner, Purification of Helium from a Cryogenic Natural Gas Nitrogen Rejection Unit by Pressure Swing Adsorption, Separation and Purification Technology, vol. 193, pp. 91-102, 2018.
[15] P. G. de Montgareuil and D. Domine, Process for Separating a Binary Gaseous Mixture by Adsorption, U.S. Patent no.3155468, 1964.
[16] B. K. Na, H. L. Lee, K. K. Koo, and H. K. Song, Effect of Rinse and Recycle Methods on the Pressure Swing Adsorption Process to Recover CO2 from Power Plant Flue Gas Using Activated Carbon, Industrial & Engineering Chemistry Research, vol. 41, pp. 5498-5503, 2002.
[17] K. Chihara and M. Suzuki, Air Drying by Pressure Swing Adsorption, Journal of Chemical Engineering of Japan, vol. 16, pp. 293-299, 1983.
[18] J. J. Collins, Air Separation by Adsorption, U.S. Patent no.4026680, 1975.
[19] S. J. Doong and R. T. Yang, Hydrogen Purification by the Multibed Pressure Swing Adsorption Process, Reactive Polymers, vol. 6, pp. 7-13, 1987.
[20] L. Jiang, V.G. Fox, and L.T. Biegler, Simulation and Optimal Design of Multiple-Bed Pressure Swing Adsorption Systems, AIChE Journal, vol. 50, pp. 2904-2914, 2004.
[21] E. Rudelstorfer and A. Fuderer, Selective Adsorption Process, U.S. Patent no.3986849, 1976.
[22] P. H. Turnock and R. H. Kadlec, Separation of Nitrogen and Methane via Periodic Adsorption, AIChE Journal, vol. 17, pp. 335-342, 1971.
[23] R.T. Yang and S. J. Doong, Gas Separation by Pressure Swing Adsorption: A Pore-Diffusion Model for Bulk Separation, AIChE Journal, vol. 31, pp. 1829-1842, 1985.
[24] S. Farooq and D. M. Ruthven, A Comparison of Linear Driving Force and Pore Diffusion Models for a Pressure Swing Adsorption Bulk Separation Process, Chemical Engineering Science, vol. 45, pp. 107-115, 1990.
[25] E. Glueckauf and J. I. Coates, Theory of Chromatography. part IV. the Influence of Incomplete Equilibrium on the Front Boundary of Chromatograms and on the Effectiveness of Separation, Journal of the Chemical Society, pp. 1315-1321, 1947.
[26] L. Wang, Y. Yang, W. Shen, X. Kong, P. Li, J. Yu , and A. E. Rodrigues, Experimental Evaluation of Adsorption Technology for CO2 Capture, Chemical Engineering Science, vol. 101, pp. 615-619, 2013.
[27] H. Erden, A. D. Ebner, and J. A. Ritter, Development of a Pressure Swing Adsorption Cycle for Producing High Purity CO2 from Dilute Feed Streams. Part I: Feasibility Study, Industrial & Engineering Chemistry Research, vol. 57, pp. 8011-8022, 2018.
[28] Z. Liu, L. Wang, X. M. Kong, P. Li, J. Yu, and A. E. Rodrigues, Onsite CO2 Capture from Flue Gas by an Adsorption Process in a Coal-Fired Power Plant, Industrial & Engineering Chemistry Research, vol. 51, pp. 7355-7363, 2012.
[29] J. H. Ling, P. Xiao, A. Ntiamoah, D. Xu, P. Webley, Y. C. Zhai, Strategies for CO2 Capture from Different CO2 Emission Sources by Vacuum Swing Adsorption Technology, Chinese Journal of Chemical Engineering, vol. 24, pp.460-467, 2016.
[30] L. Wang, Y. Yang, W. L. Shen, X. M. Kong, P. Li, J. Yu and A. E. Rodrigues, CO2 Capture from Flue Gas in an Existing Coal-Fired Power Plant by Two Successive Pilot-Scale VPSA Units, Industrial & Engineering Chemistry Research, vol. 52, pp. 7947-7955, 2013.
[31] D. Wawrzyńczak, I. Majchrzak-Kucęba, K. Srokosz, M. Kozak, W. Nowak, J. Zdeb, W. Smółka, and A. Zajchowski, The Pilot Dual-Reflux Vacuum Pressure Swing Adsorption Unit for CO2 Capture from Flue Gas, Separation and Purification Technology, vol. 209, pp. 560-570, 2019.
[32] J. Zhang, P. A. Webley, and P. Xiao, Effect of Process Parameters on Power Requirements of Vacuum Swing Adsorption Technology for CO2 Capture From Flue Gas, Energy Conversion and Management, vol. 49, pp. 346-356, 2008.
[33] P. Xiao, J. Zhang, P. Webley, G. Li, R. Singh, and R. Todd, Capture of CO2 From Flue Gas Streams with Zeolite 13X by Vacuum Pressure Swing Adsorption, Adsorption, vol. 14, pp. 575–582 , 2008.
[34] J. A. Delgado, M. A. Uguina, J. L. Sotelo, V. I. Águeda, A. Sanz, and P. Gómez, Numerical Analysis of CO2 Concentration and Recovery From Flue Gas by a Novel Vacuum Swing Adsorption Cycle, Computers & Chemical Engineering, vol. 35, pp. 1010-1019, 2011.
[35] M. Alibolandi, S. M. Sadrameli, F. Rezaee, and J. T. Darian, Separation of CO2/N2 Mixture by Vacuum Pressure Swing Adsorption (VPSA) Using Zeolite 13X Type and Carbon Molecular Sieve Adsorbents, Heat Mass Transfer, vol. 56, pp. 1985–1994, 2020.
[36] J. H. Park, H. T. Beum, Jg. N. Kim, and S. H. Cho, Numerical Analysis on the Power Consumption of the PSA Process, Industrial & Engineering Chemistry Research, vol. 41, pp. 4122-4131, 2002.
[37] C.T. Chou and C.Y. Chen, Carbon Dioxide Recovery by Vacuum Swing Adsorption, Separation and Purification Technology, no. 39, pp. 51-65, 2004.
[38] D. D. Do, Adsorption Analysis: Equilibria and Kinetics, Imperial College Press, 1998.
[39] C. Y. Wen and L. T. Fan, Models for Flow Systems and Chemical Reactors, New York: Dekker, 1975.
[40] R. B. Bird, W. E. Stewart and E. N. Lightfoot, Transport Phenomena, 2nd ed., New Jersey: Wiley, 2007.
[41] E. N. Fuller, P. D. Schettler, and J. C. Giddings, A Comparison of Methods for Predicting Gaseous Diffusion Coefficients, Journal of Chromatography, vol. 3, pp. 222-227, 1965.
[42] E. N. Fuller, K. Ensley, and J. C. Giddings, Diffusion of Halogenated Hydrocarbons in Helium. The Effect of Structure on Collision Cross Sections, The Journal of Physical Chemistry, vol. 73, pp. 3679-3685, 1969.
[43] D. F. Fairbanks, and C.R. Wilke, Diffusion Coefficients in Multicomponent Gas Mixtures, Industrial & Engineering Chemistry, vol. 42, pp. 471-475, 1950.
[44] W. L. McCabe, J. C. Smith, and P. Harriott, Unit Operations of Chemical Engineering, 7th ed., New York: McGraw-Hill, 2005.
[45] W. H. McAdams, Heat Transmission, 3rd ed., New York: McGraw-Hill, 1954.
[46] S. Farooq, and D. M. Ruthven, Heat Effects in Adsorption Column Dynamics. 2. Experimental Validation of Theone-Dimensional Model, Industrial & Engineering Chemistry Research, vol. 29, pp. 1084-1090, 1990.
[47] N. Wakao, S. Kaguei, and T. Funazkri, Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients In Packed Beds: Correlation of Nusselt Numbers, Chemical Engineering Science, vol. 34, pp. 325-336, 1979.
[48] G. Carta, and A. Cincotti, Film Model Approximation Fornon-Linear Adsorption and Diffusion in Spherical Particles, Chemical Engineering Science, vol. 53, pp. 3483-3488, 1998.
[49] J. Karger, D. M. Ruthven, and J. Wiley, Diffusion in Zeolites and Other Microporous Solids, New Jersey: Wiley, 2008.
[50] M. D. LeVan, G. Carta, and C. M. Yon, Adsorption and Ion Exchange, in Perry′s Chemical Engineers′ Handbook, 7th ed., New York: McGrawHill, 1997.
[51] K. Kawazoe, M. Suzuki, K. Chihara, Chromatographic Study of Diffusion in Molecular-Sieving Carbon., Journal of Chemical Engineering of Japan, vol. 7, pp. 151-157, 1974.
[52] H. Qinglin, S. M. Sundaram, and S. Farooq, Revisiting Transport of Gases in the Micropores of Carbon Molecularsieves, Langmuir, vol. 19, pp. 393-405, 2003.
[53] X. Hu, E. Mangano, D. Friedrich, H. Ahn, and S. Brandani, Diffusion Mechanism of CO2 in 13X Zeolite Beads, Adsorption, vol. 20, pp. 121-135, 2014.
[54] P. V. Danckwerts, Continuous Flow Systems: Distribution of Residence, Chemical Engineering Science, vol. 2, pp. 1-13, 1953.
[55] 李念祖,《利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗》,碩士論文,國立中央大學化學工程與材料工程學系,2015。
[56] J. M. Smith, and H. C. Ness, Introduction to Chemical Engineering Thermodynamics, 4th ed., New York: McGraw Hill, 1987.
[57] 郭家禎,《利用三塔式真空變壓吸附法捕獲燃煤電廠煙道氣中二氧化碳之實驗研究》,碩士論文,國立中央大學化學工程與材料工程學系,2020。
[58] 鄭筑勻,《以變壓吸附法捕獲發電廠煙道氣中二氧化碳之模擬研究與實驗設計分析》,碩士論文,國立中央大學化學工程與材料工程學系,2019。
[59] A. Golmakani, S. Fatemi, and J. Tamnanloo, CO2 Capture From the Tail Gas of Hydrogen Purification Unit by Vacuum Swing Adsorption Process, Using SAPO-34, Industrial & Engineering Chemistry Research, vol. 55, pp. 334-350, 2016.
[60] R. C. Patel and C. J. Karamchandani, Elements of Heat Engines, 8th ed, Vadodara: Acharya, 1997.
[61] K. Kamatani, "Efficient Strategy for the Markov Chain Monte Carlo in High-Dimension with Heavy-Tailed Target Probability Distribution," Bernoulli, vol. 24, no. 4B, pp. 3711-3750, 2018.
指導教授 周正堂 楊閎舜 審核日期 2020-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明