參考文獻 |
[1] A. Petersson and A. Wellinger, “Biogas Upgrading Technologies - Developments and Innovations,” IEA Bioenergy, Task 37 - Energy from biogas and landfill gas, 2009.
[2] I. V. Yentekakis and G. Goula, “Biogas Management: Advanced Utilization for Production of Renewable Energy and Added Value Chemicals,” Frontiers in Environmental Science, vol. 5, 2017.
[3] 楊立群,〈趨向成熟的技術,生物天然氣的純化與應用〉,工業局石化產業高值化推動專案,網址:https://www.pipo.org.tw/Hr/article_more?id=13,上網日期:2017年6月15日。
[4] 洪凡和郭家倫,〈參加第一屆中歐生物天然氣高峰論壇赴大陸報告〉,2016。
[5] 謝宗翰,〈以石安牧場為例,打造農畜牧業的循環經濟〉,城市發展,第22冊,頁76-87,2017。
[6] M. P. S. Santos, C. A. Grande and A. E. Rodrigues, “Pressure Swing Adsorption for Biogas Upgrading. Effect of Recycling Streams in Pressure Swing Adsorption Design,” Industrial & Engineering Chemistry, pp. 974-985, 2011.
[7] 財團法人中央畜產會,《2018台灣養豬統計手冊》,台北市:財團法人中央畜產會,2019。
[8] 蘇忠楨,〈畜牧業沼氣生物脫硫系統開發及世界沼氣工廠市場評估〉,安全農業,第16冊,頁60-72,2008。
[9] B. Bharathiraja, T. Sudharsanaa, J. Jayamuthunagaib, R. Praveenkumarc and S. Chozhavendhand, “Biogas Production – A review on Composition, Fuel Properties, Feed Stock and Principles of Anaerobic Digestion,” Renewable and Sustainable Energy Reviews 90, pp. 570-582, 2018.
[10] D. C. Montgomery, “Design and Analysis of Experiments,” 7 ed., New Jersey: John Wiley & Sons, 2009, pp. 417-485.
[11] R. T. Yang, “Gas Separation by Adsorption Process,” vol. 1, London: Imperial College Press, 1997.
[12] R. T. Yang, “Adsorbents: Fundamentals and Applications,” New Jersey: John Wiley & Sons, 2003
[13] A. Agarwal, “Advanced Strategies for Optimal Design and Operation of Pressure Swing Adsorption Processes,”Pittsburgh: Carnegie Mellon University Press, 2010.
[14] W. H. McAdams, “Heat Transmission,” 3rd ed., New York: McGraw Hill, 1954.
[15] C. W. Skarstrom, “Esso Research and Engineering Company,” United States Patent 2,944,627, 1960.
[16] A. E. Rodrigues, M. D. LeVan and D. Tondeur, “Adsorption: Science and Technology,” Alphen aan den Rijn: Kluwer, 1988.
[17] W. Choi, T. Kwon and Y. Yeo, “Optimal Operation of the Pressure Swing Adsorption (PSA) Process,” Korean Journal of Chemical Engineering, vol. 20, pp. 617-623, 2003.
[18] D. Domin and P. Guerin de Montgareuil, “Process for Separating a Binary Gaseous Mixture by Adsorption,” United States Patent 3,155,468, 1964.
[19] P. E. Jahromi, S. Fatemi, A.Vatani, J.A. Ritter and A. D. Ebner, “Purification of Helium from a Cryogenic Natural Gas Nitrogen Rejection Unit by Pressure Swing Adsorption,” Separation and Purification Technology, vol. 193, pp. 91-102, 2018.
[20] B. K. Na, H. L. Lee, K. K. Koo and H. K. Song, “Effect of Rinse and Recycle Methods on the Pressure Swing Adsorption Process to Recover CO2 from Power Plant Flue Gas Using Activated Carbon,” Industrial & Engineering Chemistry Research, vol. 41, pp. 5498-5503, 2002.
[21] R. T. Yang and S. J. Doong, “Gas Separation by Pressure Swing Adsorption: A Pore-Diffusion Model for Bulk Separation,” AIChE Journal, vol. 31, pp. 1829-1842, 1985.
[22] L. Jiang, V. G. Fox and L. T. Biegler, “Simulation and Optimal Design of Multiple-Bed Pressure Swing Adsorption Systems,” AIChE Journal, vol. 50, pp. 2904-2914, 2004.
[23] A. Fuderer and E. Rudelstorfer, “Selective Adsorption Process,” United States Patent 3,986,849, 1976.
[24] P. H. Turnock and R. H. Kadlec, “Separation of Nitrogen and Methane via Periodic Adsorption,” AIChE Journal, vol. 17, pp. 335-342, 1971.
[25] S. Farooq and D. M. Ruthven, “Heat Effects in Adsorption Column Dynamics. 2. Experimental Validation of Theone-Dimensional Model,” Industrial & Engineering Chemistry Research, vol. 29, pp. 1084-1090, 1990.
[26] E. Glueckauf and J. I. Coates, “Theory of Chromatography. part IV. the Influence of Incomplete Equilibrium on the Front Boundary of Chromatograms and on the Effectiveness of Separation,” Journal of the Chemical Society, pp. 1315-1321, 1947.
[27] H. H. Heck, M. L. Hall, R. dos Santos and M. M. Tomadakis, “Pressure swing adsorption separation of H2S/CO2/CH4 gas mixtures with molecular sieves 4A, 5A and 13X,” Separation Science and Technology, vol. 53, pp. 1490-1497, 2017.
[28] F. Gholipour and M. Mofarahi, “Adsorption Equilibrium of Methane and Carbon Dioxide on Zeolite 13X: Experimental and Thermodynamic Modeling,” The Journal of Supercritical Fluids, vol. 111, pp. 47-54, 2016.
[29] M. Mofarahi and S. M. Salehi, “Pure and Binary Adsorption Isotherms of Ethylene and Ethane on Zeolite 5A,” Adsorption, vol. 19, pp. 101-110, 2013.
[30] J. A. C. Silva, K. Schumann and A. E. Rodrigues, “Sorption and Kinetics of CO2 and CH4 in binderless beads of 13X zeolite,” Microporous and Mesoporous Materials, vol. 158, pp. 219-228, 2012.
[31] Z. J. Pan , S. G. Chen, J. Tang and R. T. Yang, “Pore Structure Alteration of a Carbon Molecular Sieve for the Separation of Hydrogen Sulfide from Methane by Adsorption,” Adsorption Science & Technology, vol. 10, pp. 193-201, 1993.
[32] R. B. Rios, F. M. Stragliotto, H. R. Peixoto, A. E. B. Torres, M. Bastos-Neto, D. C. S. Azevedo and C. L. Cavalcante Jr., “Studies on the Adsorption Behavior of CO2-CH4 Mixtures Using Activated Carbon,” Brazilian Journal of Chemical Engineering, vol. 30, 2013.
[33] X. Peng and D. Cao, “Computational Screening of Porous Carbons, Zeolites and Metal Organic Frameworks for Desulfurization and Decarburization of Biogas, Natural Gas and Flue Gas,” AIChE Journal, vol. 59, pp. 2928-2942, 2013.
[34] L. Sigot, G. Ducom, B. Benadda and C. Labouré, “Comparison of Adsorbents for H2S and D4 Removal for Biogas Conversion in a Solid Oxide Fuel Cell,” Environmental Technology, vol. 37, pp. 86-95, 2016.
[35] A. J. Cruz, J. Pires, A. P. Carvalho and M. B. D. Carvalho, “Physical Adsorption of H2S Related to the Conservation of Works of Art: The Role of the Pore Structure at Low Relative Pressure,” Adsorption, vol. 11, pp. 569-576, 2005.
[36] L. Sigot, M. F. Obis, H. Benbelkacem, P. Germain and G. Ducom, “Comparing the Performance of a 13X Zeolite and an Impregnated Activated Carbon for H2S Removal from Biogas to Fuel an SOFC: Influence of Water,” International Journal of Hydrogen Energy, vol. 41, pp. 18533-18541, 2016.
[37] M. M. Tomadakis, H. H. Heck, M. E. Jubran and K. Al-Harthi, “Pressure-Swing Adsorption Separation of H2S from CO2 with Molecular Sieves 4A, 5A and 13X,” Separation Science and Technology, vol. 46, pp. 428-433, 2011.
[38] K. G. Wynnyk, B. Hojjati and R. A. Marriott, “High-Pressure Sour Gas and Water Adsorption on Zeolite 13X,” Industrial & Engineering Chemistry Research, vol. 57, pp. 15357-15365, 2018.
[39] A. Kapoor and R. T. Yang, “Kinetic Separation of Methane - Carbon Dioxide Mixture by Adsorption on Molecular Sieve Carbon,” Chemical Engineering Science, vol. 44, pp. 1723-1733, 1989.
[40] R. L. S. Canevesi, K. A. Andreassen, E. A. da Silva, C. E. Borba and C. A. Grande, “Pressure Swing Adsorption for Biogas Upgrading with Carbon Molecular Sieve,” Industrial & Engineering Chemistry Research, vol. 57, 2018.
[41] S. N. Vyas, S. R. Patwardhan, I. Gupta and V. Burra, “Bulk Separation and Purification of CH4/CO2 Mixtures on 4A/13X Molecular Sieves by Using Pressure Swing Adsorption,” Separation Science and Technology, vol. 26, pp. 1419-1431, 1991.
[42] S. A. Peter, “Kinetic Gas Separation Using Small Pore Metal Organic Frameworks: Dynamic Desorption and Pressure Swing Adsorption Studies of CO2 and CH4 in Amino-MIL - 53 (Al) for Biogas Upgradation,” 2013. https://www.belspo.be/belspo/organisation/Call/forms/Grants/Rapports%20finals/PF/PF_2011_Sunil.pdf
[43] C. A. Grande and A. E. Rodrigues, “Biogas to Fuel by Vacuum Pressure Swing Adsorption I. Behavior of Equilibrium and Kinetic-Based Adsorbents,” Industrial & Engineering Chemistry, vol. 46, pp. 4595–4605, 2007.
[44] S. Cavenati, C. A. Grande and A. E. Rodrigues, “Layered Pressure Swing Adsorption for Methane Recovery from CH4/CO2/N2 Streams,” Adsorption, vol. 11, pp. 549–554, 2005.
[45] C. T. Chou and C. Y. Chen, “Carbon Dioxide Recovery by Vacuum Swing Adsorption, ” Separation and Purification Technology, vol. 39, pp. 51-65, 2004.
[46] S. Sircar, R. Mohr, C. Ristic and M. B. Rao, “Isosteric Heat of Adsorption: Theory and Experiment,” The Journal of Physical Chemistry B, vol. 103, pp. 6539-6546, 1998.
[47] C. Y. Wen and L. T. Fan, “Models for Flow Systems and Chemical Reactors,” New York: Dekker, 1975.
[48] R. B. Bird, W. E. Stewart and E. N. Lightfoot, “Transport Phenomena,” 2nd ed., New Jersey: John Wiley & Sons, 2007.
[49] E. N. Fuller, P. D. Schettler and J. C. Giddings, “A Comparison of Methods for Predicting Gaseous Diffusion Coefficients,” Journal of Chromatography, vol. 3, pp. 222-227, 1965.
[50] E. N. Fuller, K. Ensley and J. C. Giddings, “Diffusion of Halogenated Hydrocarbons in Helium. The Effect of Structure on Collision Cross Sections,” The Journal of Physical Chemistry, vol. 73, pp. 3679-3685, 1969.
[51] D. F. Fairbanks and C. R. Wilke, “Diffusion Coefficients in Multicomponent Gas Mixtures,” Industrial & Engineering Chemistry, vol. 42, pp. 471-475, 1950.
[52] W. L. McCabe, J. C. Smith and P. Harriott, “Unit Operations of Chemical Engineering,” 7th ed., New York: McGraw Hill, 2005.
[53] N. Wakao, S. Kaguei and T. Funazkri, “Effect of Fluid Dispersion Coefficients on Particle-to-Fluid Heat Transfer Coefficients In Packed Beds: Correlation of Nusselt Numbers,” Chemical Engineering Science, vol. 34, pp. 325-336, 1979.
[54] G. Carta and A. Cincotti, “Film Model Approximation Fornon-Linear Adsorption and Diffusion in Spherical Particles,” Chemical Engineering Science, vol. 53, pp. 3483-3488, 1998.
[55] J. Kärger and D. M. Ruthven, “Diffusion in Zeolites and Other Microporous Solids,” New York: John Wiley & Sons, 1992.
[56] M. D. LeVan, G. Carta and C. M. Yon, “Adsorption and Ion Exchange, in Perry′s Chemical Engineers′ Handbook,” 7th ed., New York: McGraw Hill, 1997.
[57] K. Kawazoe, M. Suzuki and K. Chihara, “Chromatographic Study of Diffusion in Molecular-sieving Carbon,” Journal of Chemical Engineering of Japan, vol. 7, pp. 151-157, 1974.
[58] H. Qinglin, S. M. Sundaram and S. Farooq, “Revisiting Transport of Gases in the Micropores of Carbon Molecular Sieves,” Langmuir, vol. 19, pp. 393-405, 2003.
[59] X. Hu, E. Mangano, D. Friedrich, H. Ahn and S. Brandani, “Diffusion Mechanism of CO2 in 13X Zeolite Beads,” Adsorption, vol. 20, pp. 121-135, 2014.
[60] Y. Park, Y. Ju, D. Park and C. H. Lee, “Adsorption Equilibria and Kinetics of Six Pure Gases on Pelletized Zeolite 13X up to 1.0 MPa: CO2, CO, N2 ,CH4 ,Ar and H2,” Chemical Engineering Journal, vol. 292, pp. 348–365, 2016.
[61] M. I. Hossain, C. E. Holland, A. D. Ebner and J. A. Ritter, “Mass Transfer Mechanisms and Rates of CO2 and N2 in 13X Zeolite from Volumetric Frequency Response,” Industrial & Engineering Chemistry Research, vol. 58, pp. 21679-21690, 2019.
[62] P. V. Danckwerts, “Continuous Flow Systems: Distribution of Residence,” Chemical Engineering Science, vol. 2, pp. 1-13, 1953.
[63] Fluid Controls Institute, Inc., “Recommended Voluntary Standard Formulas for Sizing Control Valves,” FCI 62-1, May 1962.
[64] R. C. Patel and C. J. Karamchandani, “Elements of Heat Engines,” 8th ed, Vadodara: Acharya, 1997.
[65] A. Golmakani, S. Fatemi and J. Tamnanloo, “CO2 Capture from the Tail Gas of Hydrogen Purification Unit by Vacuum Swing Adsorption Process, Using SAPO-34,” Industrial & Engineering Chemistry Research, vol. 55, pp. 334-350, 2016.
[66] 李念祖,《利用變壓吸附法捕獲煙道氣與合成氣中二氧化碳之實驗》,碩士論文,國立中央大學化學工程與材料工程學系,2015。
[67] J. M. Smith and H. C. Ness, “Introduction to Chemical Engineering Thermodynamics,” 4th ed., New York: McGraw Hill, 1987.
[68] H. Golipour, B. Mokhtarani, M. Mafi, M. Khadivi and H. R. Godini, “Systematic Measurements of CH4 and CO2 Adsorption Isotherms on Cation-Exchanged Zeolites 13X,” Journal of Chemical & Engineering Data, vol. 64, pp. 4412–4423, 2019.
[69] 沈珍瑜,《雙塔式變壓吸附法捕獲合成氣中二氧化碳之實驗設計分析》,碩士論文,國立中央大學化學工程與材料工程學系,2018。
[70] 環保監測工,〈影響乾式厭氧發酵技術的六大因素剖析之紅外沼氣分析技術〉,農業,2017。
[71] 田賀文,《以反應曲面法建立旋鍛製程之菇狀預測模型》,碩士論文,國立中央大學化學機械工程學系,2013。
[72] G. E. P. Box and N. R. Draper, “Empirical Model Building and Response Surfaces,” New Jersey: John Wiley & Sons, 1987.
[73] R. H. Myers and D. C. Montgomery, “Response Surface Methodology” New York: John Wiley & Sons, 1995.
[74] 葉怡成,《實驗規劃-製程與產品最佳化》,台北市:五南圖書出版公司,ISBN:9571124087,2005。
[75] K. Kamatani, “Efficient Strategy for the Markov Chain Monte Carlo in High-Dimension with Heavy-Tailed Target Probability Distribution,” Bernoulli, vol. 24, no. 4B, pp. 3711-3750, 2018. |