博碩士論文 107324072 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:76 、訪客IP:3.21.244.94
姓名 蔡嘉豪(Jia-Hao Cai)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 氧化鋁奈米模板法製備一維規則準直銅金屬奈米錐及其特性之研究
相關論文
★ 規則氧化鋁模板及鎳金屬奈米線陣列製備之研究★ 電化學沉積法製備ZnO:Al奈米柱陣列結構及其性質研究
★ 溼式蝕刻製程製備矽單晶奈米結構陣列及其性質研究★ 氣體電漿表面改質及濕式化學蝕刻法結合微奈米球微影術製備位置、尺寸可調控矽晶二維奈米結構陣列之研究
★ 陽極氧化鋁模板法製備一維金屬與金屬氧化物奈米結構陣列及其性質研究★ 水熱法製備ZnO, AZO 奈米線陣列成長動力學以及性質研究
★ 新穎太陽能電池基板表面粗糙化結構之研究★ 規則準直排列純鎳金屬矽化物奈米線、奈米管及異質結構陣列之製備與性質研究
★ 鈷金屬與鈷金屬氧化物奈米結構製備及其性質研究★ 單晶矽碗狀結構及水熱法製備ZnO, AZO奈米線陣列成長動力學及其性質研究
★ 準直尖針狀矽晶及矽化物奈米線陣列之製備及其性質研究★ 奈米尺度鎳金屬點陣與非晶矽基材之界面反應研究
★ 在透明基材上製備抗反射陽極氧化鋁膜及利用陽極氧化鋁模板法製備雙晶銅奈米線之研究★ 準直矽化物奈米管陣列、超薄矽晶圓與矽單晶奈米線陣列轉附製程之研究
★ 尖針狀矽晶奈米線陣列及凖直鐵矽化物奈米結構之製備與性質研究★ 金屬氧化物奈米結構製備及其表面親疏水性質之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 陽極氧化鋁由於其具備準直孔洞通道結構,可應用於過濾、抗反射塗層和奈米結構材料的模板等領域,近年來受到廣泛的研究。目前已有多種製造錐狀陽極氧化鋁膜之技術被開發出來,例如:PMMA模板輔助法、離子束光刻法以及模板奈米壓印法等。然而這些製備之步驟繁瑣耗時長、無法製備大面積模板及製備成本昂貴,使得在實際應用上受到很大的限制。為克服相關製程限制,本研究利用單層奈米球陣列微影技術,藉由調控奈米球的直徑和陽極氧化蝕刻、擴孔條件,成功地製備出孔徑和間距可調變之規則有序錐狀陽極氧化鋁奈米模板。此外,銅金屬奈米錐,因其結構具有高準直性與高表面積之優點,被廣泛應用於光電元件、場發射、觸媒催化、水解產氫等領域上,然而如何精準控制所製備一維銅奈米結構之尺寸、形貌、排列週期性等,一直是急需克服的挑戰。因此,本研究也利用上述製程所製備之規則氧化鋁奈米模板進一步結合電化學沉積製程,可在具有導電性的各式基材上製備出一系列準直有序排列且內外徑可調變之一維銅金屬奈米錐陣列。而此所開發之新穎製程技術,相信將可應用於製備其他各式一維金屬或半導體奈米結構陣列。另外由於銅金屬奈米錐的有序排列、高深寬比結構等,具有極低啟動電場的優異電子場發射特性。這裡所提出的新方法將提供在製備一維銅金屬奈米錐陣列結構基電子場發射源有序陣列的能力。
摘要(英) The anodic aluminum oxide (AAO) have been widely used as templates in nanotechnology. Due to their characteristic continuous, highly ordered pore structures, they have been utilized extensively in the fabrication of nanomaterials leading to various applications, such as separating, antireflection coating, and a template for synthesis of various nanostructures. To fabricate cone-shaped AAO templates with well-ordered nanopore arrays, a variety of patterning techniques have been developed. However, the low processing speed, high-cost, and operational complexity make them challenging to use. In this study, we propose a high throughput and low-cost nanopatterning approach to fabricate thin AAO templates, which is based on the nanosphere lithography with three-step anodization and two-step widen process. The pore diameter and inter-pore spacing can be readily controlled by adjusting the diameter of the nanospheres and the anodic etching conditions. In addition, copper metal nanocones are widely used in optoelectronic devices, field emission, catalyst catalysis and hydrogen evolution reaction due to their well-ordered and high surface area. However, how to accurately control the size, cone-shaped and periodicity of the prepared one-dimensional copper nanostructure has been a challenge. Herein we report a novel way to fabricate high filling, large-area, and uniform copper metal nanocones arrays by nanosphere lithography combined with electrochemical deposition technology. In addition, the copper metal nanotubes owing to their well-ordered arrangement, high aspect ratio, and hollow structure, exhibit excellent field-emission properties with a very low turn-on field. The obtained results present the exciting prospect that the new approach proposed here will provide the capability to fabricate well-ordered arrays of copper metal nanotubes-based field emitters.
關鍵字(中) ★ 氧化鋁奈米模板
★ 規則準直
★ 奈米錐
關鍵字(英)
論文目次 目錄
第一章 前言及文獻回顧 1
1-1 前言 1
1-2一維金屬奈米結構 3
1-2-1一維金屬奈米結構之應用 3
1-2-1 一維金屬奈米結構之製備 3
1-3 場發射電極元件 4
1-3-1 場發射理論 4
1-3-2 場發射應用 5
1-4陽極氧化鋁膜 7
1-4-1陽極氧化鋁膜成長機制 7
1-4-2 陽極氧化鋁膜成長控制變因 8
1-4-3 陽極氧化鋁膜規則化孔洞製程 10
1-5自組裝奈米球微影術 11
1-5-1 奈米球自組裝機制 11
1-5-2奈米球微影術之發展 12
1-5-3奈米球微影術之製備規則有序之奈米結構 12
1-6研究目標及動機 13
第二章 實驗步驟及實驗設備 15
2-1 尖錐狀陽極氧化鋁奈米球模板之製程 15
2-1-1 金屬鋁片前處理 15
2-1-2自組裝奈米球陣列模板製備 15
2-1-3氧氣電漿蝕刻均勻調控奈米球模板尺寸 16
2-1-4蒸鍍二氧化矽薄膜 16
2-1-5舉離奈米球模板及製備工作電極 17
2-1-6製備規則有序尖錐狀陽極氧化奈米模板 17
2-2電化學沉積法製備一維銅金屬奈米尖錐陣列 19
2-3 填充聚苯乙烯高分子製備一維奈米結構陣列 19
2-4實驗設備 20
2-4-1電漿蝕刻反應器 20
2-4-2電子槍蒸鍍系統 20
2-4-3陽極氧化鋁膜製備系統 20
2-4-4電化學沉積系統 21
2-5儀器分析實驗 21
2-5-1掃描式電子顯微鏡 21
2-5-2影像式接觸角量測儀 22
第三章 結果與討論 23
3-1未定義凹槽之陽極氧化鋁膜製程分析 23
3-2 聚苯乙烯奈米球模板製備 24
3-3製備出具有規則有序之陽極氧化鋁奈米模板 25
3-3-1金屬鋁片上製備奈米球模板結構與分析 26
3-3-2二氧化矽薄膜對於尖錐狀陽極氧化鋁模板之影響 28
3-3-3不同擴孔時間對錐狀陽極氧化鋁模生成之影響 29
3-3-2不同電解液濃度對錐狀陽極氧化鋁模生成之影響 30
3-3-3移除陽極氧化鋁膜阻障層尺寸之製程 31
3-4陽極氧化鋁奈米球模板結合電化學沉積法製備金屬銅奈米錐陣列 33
3-4-1 一維銅金屬奈米錐之結構分析 33
3-4-2一維銅金屬奈米錐成長機制探討 34
3-6一維聚苯乙烯高分子奈米錐陣列 34
3-6-1 一維聚苯乙烯高分子奈米結構陣列之製備 34
3-6-2一維聚苯乙烯高分子奈米結構陣列之水滴接觸角量測 35
第四章 結論及未來展望 36
4-1結論 36
4-2未來展望 36
參考文獻 37
圖目錄 42
參考文獻 參考文獻
[1] R. Ghosh Chaudhuri and S. Paria, “Core/shell nanoparticles: classes,properties, synthesis mechanisms, characterization, and applications,” Chem.Rev, 112 (2012) 2373.
[2] S. Pradhan, F. Di Stasio, Y. Bi, S. Gupta, S. Christodoulou, A. Stavrinadis, and G. Konstantatos, “High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level,” Nat. Nanotechnol, 14 (2019) 72-79.
[3] C.-L. Liu and H.-L Chen, “Crystal oreientation of PEO confined within the nanorod templated by AAO nanochannels,” Soft Matter, 14 (2018) 5461.
[4] J. Hajer, M. Kessel, C. Brune, M. P. Stehno, H. Buhmann, and L. W. Molenkamp, “Proximity-Induced superconductivity in CdTe-HgTe core-shell nanowires,” Nano Lett, 19 (2019) 4078-4082.
[5] W. Wang, Y. Xie, Y. Wang, H. Du, C. Xia, and F. Ti, “Glucose biosensor based on glucose oxidase immobilized on unhybridized titanium dioxide nanotube arrays,” Microchim Acta, 181 (2014) 381-387.
[6] G. Han, Y. Wu, W. Yan, L. Shui, X. Jia, E. Gao, M. Jiang, and Z. Liu, “ Controlled fabrication of gold nanotip arrays by nanomolding-necking technology,” Nanotechnology, 31 (2020) 144001.
[7] S. H. Liao, H. J. Jhuo, Y. S. Cheng, and S. A. Chen, “Fullerene derivatie-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high perfromance,” Adv. Mater, 25 (2013) 4766.
[8] D. Stange, N. V. D. Driesch, T. Zabel, F. A. Pilon, D. Rainko, B. Marzban, P. Zaumseil, J-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn heterostructure and multi quantum well lasers,” ACS Photonics, (2018) 4628–4636
[9] H. L. Kang, J. B. Lao, Z. P. Li, W. Q. Yao, C. Liu, and J. Y. Wang, “Reconstruction of GaAs/AlAs supperlattice multilayer structure by quantification of AES and SIMS sputter depth profiles,” Appl. Surf. Sci, 388 (2016) 584-588.
[10] F. Pavia and W. A. Curtin, “Molecular modeling of cracks at interfaces in nanoceramic composites,” J. Mech. Phys. Solids, 13 (2012) 1-34.
[11] H. Gong, J. Q. Hu, J. H. wang, C. H. Ong, and F. R. Zhu, “Nano-crystalline Cu-doped ZnO thin film gas sensor for CO,” Sensor. Actuat. B-Chem, 115 (2006) 247-251.
[12] L. Yang, X. Zeng1, D. Wang, D. Cao, “Biomass-Derived FeNi alloy and Nitrogen-codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn-Air battery,” Energy Storage Materials, 12 (2018) 277-283.

[13] S. Xu, Y. F. Guo, and Z. D. Wang, “Deformation mechanism of the single-crystalline nano-Cu films: Molecular dynamics simulation,” Comp. Mater. Sci, 67 (2013) 140-145.
[14] P. Serbun, F. Jordan, A. Navitski, G. Müller, I. Alber, M. E. Toimil-Molares and C. Trautmann., “Copper nanocones grown in polymer ion-track membranes as field emitters,” Appl. Phys, 58 (2012) 10402.
[15] J. Wang, L. Wei, L. Zhang, J. Zhang, H. Wei, C. Jiang, and Y. Zhang, “Controlled growth of nickel nanocrystal arrays and their field electron emission performance enhancement via removing adsorbed gas molecules,” Chem. Eng. Commun, 15 (2013) 1296-1306.
[16] J. Duan, D. Y. Lei, F. Chen, S. P. Lau, W. I. Milne, M. E. Toimil-Molares, C. Trautmann, and J. Liu, “Vertically-aligned single-crystal nano-cone arrays:
Controlled fabrication and enhanced field emission,” ACS Appl. Mater. Interfaces, 8 (2016) 472-479.
[17] B. Liu, and H. C. Zeng, “Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm,” JACS, 125 (2003) 4430-4431.
[18] X. Li, N. Kim, S. Youn, T. K. An, J. Kim, S. Lim, and S. H. Kim, “Sol(-)gel-processed organic(-)inorganic hybrid for flexible conductive substrates based on gravure-printed silver nanowires and graphene,” Polymers, 11 (2019).
[19] C. Xu, G. Liu, M. Li, K. Li, Y. Luo, Y. Long, and G. Li, “Optical switching and nanothermochromic studies of VO2(M) nanoparticles prepared by mild thermolysis method,” Materials & Design, 187 (2020) 108396.
[20] M. F. Vostakola, S. M. Mirkazemi, B. E. Yekta, “Structural, morphological and optical properties of W -doped VO2 thin films prepared by sol -gel spin coating method,” Applied Ceramic Technology, 16 (2019) 943-950.
[21] S. B. Tang, M. O. Lai, L. Lu, “Electrochemical studies of low-temperature processed nano-crystalline LiMn2O4 thin film cathode at 55 ◦C,” J. Power Sources, 164 (2007) 372-378.
[22] Y. Wang, H. Li, L. Ji, F. Zhao, Q. Kong, Y. Wang, X. Liu, W. Quan, H. Zhou, J. Chen, “Microstructure, mechanical and tribological properties of graphite-like amorphous carbon films prepared by unbalanced magnetron sputtering,” Surface & Coatings Technology, 205 (2011) 3058-3065.
[23] A. Subramania, N. T. Kalyana Sundaram, A. R. Sathiya Priya, G. Vijaya Kumar, “Preparation of a novel composite micro-porous polymer electrolyte membrane for high performance Li-ion battery,” Journal of Membrane Science, 294 (2007) 8-15.
[24] X. Zhu, J. Fan, Y. Zhang, H. Zhu, B. Dai, M. Yan, and Y. Ren, “Preparation of superparamagnetic and flexible γ-Fe2O3 nanowire arrays in an anodic aluminum oxide template,” J. Mater. Sci, 52 (2017) 12717-12723.
[25] K. Blagg, T. Greymountain, W. Kern, and M. Singh, “Template-based electrodeposition and characterization of niobium nanowires,” Electrochem. Commun, 101 (2019) 39-42.
[26] R. H. Fowler and L. Nordheim, “Electron emission in intense electric fields,” R. Soc. London, A11 (1928) 173-181.
[27] V. M. Aguero and R. C. Adamo, “Space applications of spindt cathode field emission arrays,” Spacecraft Charging Technology Conference, 6 (2000) 347-352.
[28] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display,” Appl. Phys. Lett, 75 (1999) 3129-3131.
[29] K. S. Subrahmanyam, L. S. Panchakarla, A. Govindaraj, and C. N. R. Rao, “Simple method of preparing graphene flakes by an arc-discharge method,” J. Phys. Chem, C113 (2009) 4257–4259
[30] C. D. Scott, S. Arepalli, P. Nikolaev, R. E. Smalley, “Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process,” Applied Physics A, 72 (2001) 573–580.
[31] Y. L. Li, I. A. Kinloch, A. H. Windle, “Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis,” Science, 304 (2004) 276.
[32] G. Kaura, R. Kumara, I. Lahiri, “Field electron emission from protruded GO and rGO sheets on CuO and Cu nanorods,” Physica E: Low-dimensional Systems and Nanostructures, 112 (2019) 10-18.
[33] O. Jessensky, F. Müller, and U. Gösele, “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett, 72 (1998) 1173-1175.
[34] G. E. Thompson, “Porous anodic alumina fabrication, characterization and applications,” Thin Solid Films, 297 (1997) 192-201.
[35] F. Li, L. Zhang, and R. M. Metzger, “On the growth of highly ordered poresin anodized aluminum oxide,” Chem. Mater, 10 (1998) 2470.
[36] J. Kim, S. Ganorkar, J. Choi, Y. H. Kim, and S. I. Kim, “Fabrication of Well-Ordered, Anodic Aluminum Oxide Membrane Using Hybrid Anodization,” J. Nanosci. Nanotechnol, 17 (2017) 761-765.
[37] Y. Li, Y. Qin, S. Jin, X. Hu, Z. Ling, Q. Liu, J. Liao, C. Chen, Y. Shen, and L. Jin, “A new self-ordering regime for fast production of long-range ordered porous anodic aluminum oxide films,” Electrochim. Acta, 178 (2015) 11-17.
[38] A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys, 84 (1998) 6023-6026.
[39] L. Zaraska, W. J. Stępniowski, E. Ciepiela, G. D. Sulka, “The effect of anodizing temperature on structural features and hexagonal arrangement of nanopores in alumina synthesized by two-step anodizing in oxalic acid,” Thin Solid Films, 534 (2013) 155-161.
[40] W. J. Stępniowskia, A. N. Stępniowskab, A. Preszc, T. Czujkoa, R. A. Varin, “The effects of time and temperature on the arrangement of anodic aluminum oxide nanopores,” Materials Characterization, 91 (2014) 1-9.
[41] A. Belwalkar, E. Grasinga, W. V. Geertruydenb, Z. Huangc, W. Z. Misiolek, “Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes,” Journal of Membrane Science, 319 (2018) 192-198.
[42] K. P. Lee, D. Mattia, “Monolithic nanoporous alumina membranes for ultrafiltration applications: Characterization, selectivity–permeability analysis and fouling studies,” Journal of Membrane Science, 435 (2013) 52-61.
[43] H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Sci, 268 (1995) 1466-1468.
[44] C. T. Sousa, D. C. Leitao, M. P. Proenca, J. Ventura, A. M. Pereira, and J. P. Araujo, “Nanoporous alumina as templates for multifunctional applications,” Appl. Phys, Rev. 1 (2014).
[45] C. Mijangos, R. Hernández, and J. Martin, “A Review on the progress of polymer nanostructures with modulated morphologies and properties, Using nanoporous AAO templates,” Progress in Polymer Science, 54.55 (2016) 148-182.
[46] H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, “Highly ordered nanochannel-array architecture in anodic alumina,” Appl. Phys. Lett, 71 (1997) 2770-2772.
[47] H. Masuda, M. Yotsuya, M. Asano, K. Nishio, M. Nakao, A. Yokoo, and T. Tamamura, “Self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina,” Appl. Phys. Lett, 78 (2001) 826-828.
[48] H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, “Square and triangular nanohole array architectures in anodic alumina,” Adv. Mater, 13 (2001) 189.
[49] C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces,” Appl. Phys. Lett, 78 (2001) 120-122.
[50] M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marza´ n, “Directed self-assembly of nanoparticles,” ACS Nano, 4 (2010) 3591-3605.
[51] M. A. Boles, M. Engel, and D. V. Talapin, “Self-assembly of colloidal nanocrystals: From intricate structures to functional materials,” Chem. Rev, 18 (2016) 11220-11289.
[52] M. A. Wood, “Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications,” J. R. Soc. Interface, 4 (2007) 1-17.
[53] J. Ge, Y. Yin, “Responsive photonic crystals,” Angew. Chem. Int. Ed, 7 (2011) 1492-1522.
[54] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir, 8 (1992) 3183-3190.
[55] H. Chang, H. T. Su, W. A. Chen, K. D. Huang, S. H. Chien, S. L. Chen, C. C. Chen, “Fabrication of multilayer TiO2 thin films for dye-sensitized solar cells with high conversion efficiency by electrophoresis deposition,” Solar Energy, 84 (2010) 130-136.
[56] D. B. Hall, P. Underhill, and J. M. Torkelso, “Spin coating of thin and ultrathin polymer films,” Polymer Engineeing And Science, 38 (1998) 2039-2045.
[57] E. Gale, R. Mayne, A. Adamatzky, B. D. L. Costello, “Drop-coated titanium dioxide memristors,” Materials Chemistry and Physics, 143 (2014) 524-529.
[58] J. Aizenberg, P. V. Braun, and P. Wiltzius, “Patterned colloidal deposition controlled by electrostatic and capillary forces,” Phys. Rev. Lett, 84 (2000) 2997-3000.
[59] H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett, 41 (1982) 377-379.
[60] X. Chen, X. Wei, and K. Jiang, “The fabrication of high-aspect-ratio, size-tunable nanopore arrays by modified nanosphere lithography,” Nanotechnology, 20 (2009) 425605.
[61] R. P. V. Dutne, J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, and T. R. Jensen, “Nanosphere lithography:size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem, B 103 (1999) 3854-3863.
[62] Q. Hao, H. Huang, X. Fan, Y. Yin, J. Wang, W. Li, T. Qiu, L. Ma, P. K. Chu, and O. G. Schmidt, “Controlled patterning of plasmonic dimers by using an ultrathin nanoporous alumina membrane as a shadow mask,” ACS Appl. Mater. Interfaces, 9 (2017) 36199-36250.
[63] L. D. Rafailović, C. Gammer, J. Srajer, T. Trišović, J. Rahel, and H. P. Karnthaler, “Surface enhanced Raman scattering of dendritic Ag nanostructures grown with anodic aluminium oxide,” RSC Adv, 6 (2016) 33348-33352.
[64] Y. Xu, M. Zhou, and Y. Lei, “Nanoarchitectured Array Electrodes for Rechargeable Lithium- and Sodium-Ion Batteries,” Adv. Energy Mater, 6 (2016) 1502514.
[65] A. L. Lipson, D. J. Comstock, and M. C. Hersam, “Nanoporous templates and membranes formed by nanosphere lithography and aluminum anodization,” Small, 5 (2009) 2807-11.
[65] F. M. Chang, S. L. Cheng, S. J. Hong, Y. J. Sheng, and H. K. Tsao, “Superhydrophilicity to superhydrophobicity transition of CuO nanowire films,” Appl. Phs. Lett. 96 (2010) 114101-1–114101-3.
指導教授 鄭紹良 審核日期 2020-8-19
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明