參考文獻 |
參考文獻
[1] R. Ghosh Chaudhuri and S. Paria, “Core/shell nanoparticles: classes,properties, synthesis mechanisms, characterization, and applications,” Chem.Rev, 112 (2012) 2373.
[2] S. Pradhan, F. Di Stasio, Y. Bi, S. Gupta, S. Christodoulou, A. Stavrinadis, and G. Konstantatos, “High-efficiency colloidal quantum dot infrared light-emitting diodes via engineering at the supra-nanocrystalline level,” Nat. Nanotechnol, 14 (2019) 72-79.
[3] C.-L. Liu and H.-L Chen, “Crystal oreientation of PEO confined within the nanorod templated by AAO nanochannels,” Soft Matter, 14 (2018) 5461.
[4] J. Hajer, M. Kessel, C. Brune, M. P. Stehno, H. Buhmann, and L. W. Molenkamp, “Proximity-Induced superconductivity in CdTe-HgTe core-shell nanowires,” Nano Lett, 19 (2019) 4078-4082.
[5] W. Wang, Y. Xie, Y. Wang, H. Du, C. Xia, and F. Ti, “Glucose biosensor based on glucose oxidase immobilized on unhybridized titanium dioxide nanotube arrays,” Microchim Acta, 181 (2014) 381-387.
[6] G. Han, Y. Wu, W. Yan, L. Shui, X. Jia, E. Gao, M. Jiang, and Z. Liu, “ Controlled fabrication of gold nanotip arrays by nanomolding-necking technology,” Nanotechnology, 31 (2020) 144001.
[7] S. H. Liao, H. J. Jhuo, Y. S. Cheng, and S. A. Chen, “Fullerene derivatie-doped zinc oxide nanofilm as the cathode of inverted polymer solar cells with low-bandgap polymer (PTB7-Th) for high perfromance,” Adv. Mater, 25 (2013) 4766.
[8] D. Stange, N. V. D. Driesch, T. Zabel, F. A. Pilon, D. Rainko, B. Marzban, P. Zaumseil, J-M. Hartmann, Z. Ikonic, G. Capellini, S. Mantl, H. Sigg, J. Witzens, D. Grützmacher, and D. Buca, “GeSn/SiGeSn heterostructure and multi quantum well lasers,” ACS Photonics, (2018) 4628–4636
[9] H. L. Kang, J. B. Lao, Z. P. Li, W. Q. Yao, C. Liu, and J. Y. Wang, “Reconstruction of GaAs/AlAs supperlattice multilayer structure by quantification of AES and SIMS sputter depth profiles,” Appl. Surf. Sci, 388 (2016) 584-588.
[10] F. Pavia and W. A. Curtin, “Molecular modeling of cracks at interfaces in nanoceramic composites,” J. Mech. Phys. Solids, 13 (2012) 1-34.
[11] H. Gong, J. Q. Hu, J. H. wang, C. H. Ong, and F. R. Zhu, “Nano-crystalline Cu-doped ZnO thin film gas sensor for CO,” Sensor. Actuat. B-Chem, 115 (2006) 247-251.
[12] L. Yang, X. Zeng1, D. Wang, D. Cao, “Biomass-Derived FeNi alloy and Nitrogen-codoped porous carbons as highly efficient oxygen reduction and evolution bifunctional electrocatalysts for rechargeable Zn-Air battery,” Energy Storage Materials, 12 (2018) 277-283.
[13] S. Xu, Y. F. Guo, and Z. D. Wang, “Deformation mechanism of the single-crystalline nano-Cu films: Molecular dynamics simulation,” Comp. Mater. Sci, 67 (2013) 140-145.
[14] P. Serbun, F. Jordan, A. Navitski, G. Müller, I. Alber, M. E. Toimil-Molares and C. Trautmann., “Copper nanocones grown in polymer ion-track membranes as field emitters,” Appl. Phys, 58 (2012) 10402.
[15] J. Wang, L. Wei, L. Zhang, J. Zhang, H. Wei, C. Jiang, and Y. Zhang, “Controlled growth of nickel nanocrystal arrays and their field electron emission performance enhancement via removing adsorbed gas molecules,” Chem. Eng. Commun, 15 (2013) 1296-1306.
[16] J. Duan, D. Y. Lei, F. Chen, S. P. Lau, W. I. Milne, M. E. Toimil-Molares, C. Trautmann, and J. Liu, “Vertically-aligned single-crystal nano-cone arrays:
Controlled fabrication and enhanced field emission,” ACS Appl. Mater. Interfaces, 8 (2016) 472-479.
[17] B. Liu, and H. C. Zeng, “Hydrothermal synthesis of ZnO nanorods in the diameter regime of 50 nm,” JACS, 125 (2003) 4430-4431.
[18] X. Li, N. Kim, S. Youn, T. K. An, J. Kim, S. Lim, and S. H. Kim, “Sol(-)gel-processed organic(-)inorganic hybrid for flexible conductive substrates based on gravure-printed silver nanowires and graphene,” Polymers, 11 (2019).
[19] C. Xu, G. Liu, M. Li, K. Li, Y. Luo, Y. Long, and G. Li, “Optical switching and nanothermochromic studies of VO2(M) nanoparticles prepared by mild thermolysis method,” Materials & Design, 187 (2020) 108396.
[20] M. F. Vostakola, S. M. Mirkazemi, B. E. Yekta, “Structural, morphological and optical properties of W -doped VO2 thin films prepared by sol -gel spin coating method,” Applied Ceramic Technology, 16 (2019) 943-950.
[21] S. B. Tang, M. O. Lai, L. Lu, “Electrochemical studies of low-temperature processed nano-crystalline LiMn2O4 thin film cathode at 55 ◦C,” J. Power Sources, 164 (2007) 372-378.
[22] Y. Wang, H. Li, L. Ji, F. Zhao, Q. Kong, Y. Wang, X. Liu, W. Quan, H. Zhou, J. Chen, “Microstructure, mechanical and tribological properties of graphite-like amorphous carbon films prepared by unbalanced magnetron sputtering,” Surface & Coatings Technology, 205 (2011) 3058-3065.
[23] A. Subramania, N. T. Kalyana Sundaram, A. R. Sathiya Priya, G. Vijaya Kumar, “Preparation of a novel composite micro-porous polymer electrolyte membrane for high performance Li-ion battery,” Journal of Membrane Science, 294 (2007) 8-15.
[24] X. Zhu, J. Fan, Y. Zhang, H. Zhu, B. Dai, M. Yan, and Y. Ren, “Preparation of superparamagnetic and flexible γ-Fe2O3 nanowire arrays in an anodic aluminum oxide template,” J. Mater. Sci, 52 (2017) 12717-12723.
[25] K. Blagg, T. Greymountain, W. Kern, and M. Singh, “Template-based electrodeposition and characterization of niobium nanowires,” Electrochem. Commun, 101 (2019) 39-42.
[26] R. H. Fowler and L. Nordheim, “Electron emission in intense electric fields,” R. Soc. London, A11 (1928) 173-181.
[27] V. M. Aguero and R. C. Adamo, “Space applications of spindt cathode field emission arrays,” Spacecraft Charging Technology Conference, 6 (2000) 347-352.
[28] W. B. Choi, D. S. Chung, J. H. Kang, H. Y. Kim, Y. W. Jin, I. T. Han, Y. H. Lee, J. E. Jung, N. S. Lee, G. S. Park, and J. M. Kim, “Fully sealed, high-brightness carbon-nanotube field-emission display,” Appl. Phys. Lett, 75 (1999) 3129-3131.
[29] K. S. Subrahmanyam, L. S. Panchakarla, A. Govindaraj, and C. N. R. Rao, “Simple method of preparing graphene flakes by an arc-discharge method,” J. Phys. Chem, C113 (2009) 4257–4259
[30] C. D. Scott, S. Arepalli, P. Nikolaev, R. E. Smalley, “Growth mechanisms for single-wall carbon nanotubes in a laser-ablation process,” Applied Physics A, 72 (2001) 573–580.
[31] Y. L. Li, I. A. Kinloch, A. H. Windle, “Direct spinning of carbon nanotube fibers from chemical vapor deposition synthesis,” Science, 304 (2004) 276.
[32] G. Kaura, R. Kumara, I. Lahiri, “Field electron emission from protruded GO and rGO sheets on CuO and Cu nanorods,” Physica E: Low-dimensional Systems and Nanostructures, 112 (2019) 10-18.
[33] O. Jessensky, F. Müller, and U. Gösele, “Self-organized formation of hexagonal pore arrays in anodic alumina,” Appl. Phys. Lett, 72 (1998) 1173-1175.
[34] G. E. Thompson, “Porous anodic alumina fabrication, characterization and applications,” Thin Solid Films, 297 (1997) 192-201.
[35] F. Li, L. Zhang, and R. M. Metzger, “On the growth of highly ordered poresin anodized aluminum oxide,” Chem. Mater, 10 (1998) 2470.
[36] J. Kim, S. Ganorkar, J. Choi, Y. H. Kim, and S. I. Kim, “Fabrication of Well-Ordered, Anodic Aluminum Oxide Membrane Using Hybrid Anodization,” J. Nanosci. Nanotechnol, 17 (2017) 761-765.
[37] Y. Li, Y. Qin, S. Jin, X. Hu, Z. Ling, Q. Liu, J. Liao, C. Chen, Y. Shen, and L. Jin, “A new self-ordering regime for fast production of long-range ordered porous anodic aluminum oxide films,” Electrochim. Acta, 178 (2015) 11-17.
[38] A. P. Li, F. Müller, A. Birner, K. Nielsch, and U. Gösele, “Hexagonal pore arrays with a 50–420 nm interpore distance formed by self-organization in anodic alumina,” J. Appl. Phys, 84 (1998) 6023-6026.
[39] L. Zaraska, W. J. Stępniowski, E. Ciepiela, G. D. Sulka, “The effect of anodizing temperature on structural features and hexagonal arrangement of nanopores in alumina synthesized by two-step anodizing in oxalic acid,” Thin Solid Films, 534 (2013) 155-161.
[40] W. J. Stępniowskia, A. N. Stępniowskab, A. Preszc, T. Czujkoa, R. A. Varin, “The effects of time and temperature on the arrangement of anodic aluminum oxide nanopores,” Materials Characterization, 91 (2014) 1-9.
[41] A. Belwalkar, E. Grasinga, W. V. Geertruydenb, Z. Huangc, W. Z. Misiolek, “Effect of processing parameters on pore structure and thickness of anodic aluminum oxide (AAO) tubular membranes,” Journal of Membrane Science, 319 (2018) 192-198.
[42] K. P. Lee, D. Mattia, “Monolithic nanoporous alumina membranes for ultrafiltration applications: Characterization, selectivity–permeability analysis and fouling studies,” Journal of Membrane Science, 435 (2013) 52-61.
[43] H. Masuda and K. Fukuda, “Ordered metal nanohole arrays made by a two-step replication of honeycomb structures of anodic alumina,” Sci, 268 (1995) 1466-1468.
[44] C. T. Sousa, D. C. Leitao, M. P. Proenca, J. Ventura, A. M. Pereira, and J. P. Araujo, “Nanoporous alumina as templates for multifunctional applications,” Appl. Phys, Rev. 1 (2014).
[45] C. Mijangos, R. Hernández, and J. Martin, “A Review on the progress of polymer nanostructures with modulated morphologies and properties, Using nanoporous AAO templates,” Progress in Polymer Science, 54.55 (2016) 148-182.
[46] H. Masuda, H. Yamada, M. Satoh, H. Asoh, M. Nakao, and T. Tamamura, “Highly ordered nanochannel-array architecture in anodic alumina,” Appl. Phys. Lett, 71 (1997) 2770-2772.
[47] H. Masuda, M. Yotsuya, M. Asano, K. Nishio, M. Nakao, A. Yokoo, and T. Tamamura, “Self-repair of ordered pattern of nanometer dimensions based on self-compensation properties of anodic porous alumina,” Appl. Phys. Lett, 78 (2001) 826-828.
[48] H. Masuda, H. Asoh, M. Watanabe, K. Nishio, M. Nakao, and T. Tamamura, “Square and triangular nanohole array architectures in anodic alumina,” Adv. Mater, 13 (2001) 189.
[49] C. Y. Liu, A. Datta, and Y. L. Wang, “Ordered anodic alumina nanochannels on focused-ion-beam-prepatterned aluminum surfaces,” Appl. Phys. Lett, 78 (2001) 120-122.
[50] M. Grzelczak, J. Vermant, E. M. Furst, and L. M. Liz-Marza´ n, “Directed self-assembly of nanoparticles,” ACS Nano, 4 (2010) 3591-3605.
[51] M. A. Boles, M. Engel, and D. V. Talapin, “Self-assembly of colloidal nanocrystals: From intricate structures to functional materials,” Chem. Rev, 18 (2016) 11220-11289.
[52] M. A. Wood, “Colloidal lithography and current fabrication techniques producing in-plane nanotopography for biological applications,” J. R. Soc. Interface, 4 (2007) 1-17.
[53] J. Ge, Y. Yin, “Responsive photonic crystals,” Angew. Chem. Int. Ed, 7 (2011) 1492-1522.
[54] N. D. Denkov, O. D. Velev, P. A. Kralchevsky, I. B. Ivanov, H. Yoshimura, and K. Nagayama, “Mechanism of formation of two-dimensional crystals from latex particles on substrates,” Langmuir, 8 (1992) 3183-3190.
[55] H. Chang, H. T. Su, W. A. Chen, K. D. Huang, S. H. Chien, S. L. Chen, C. C. Chen, “Fabrication of multilayer TiO2 thin films for dye-sensitized solar cells with high conversion efficiency by electrophoresis deposition,” Solar Energy, 84 (2010) 130-136.
[56] D. B. Hall, P. Underhill, and J. M. Torkelso, “Spin coating of thin and ultrathin polymer films,” Polymer Engineeing And Science, 38 (1998) 2039-2045.
[57] E. Gale, R. Mayne, A. Adamatzky, B. D. L. Costello, “Drop-coated titanium dioxide memristors,” Materials Chemistry and Physics, 143 (2014) 524-529.
[58] J. Aizenberg, P. V. Braun, and P. Wiltzius, “Patterned colloidal deposition controlled by electrostatic and capillary forces,” Phys. Rev. Lett, 84 (2000) 2997-3000.
[59] H. W. Deckman and J. H. Dunsmuir, “Natural lithography,” Appl. Phys. Lett, 41 (1982) 377-379.
[60] X. Chen, X. Wei, and K. Jiang, “The fabrication of high-aspect-ratio, size-tunable nanopore arrays by modified nanosphere lithography,” Nanotechnology, 20 (2009) 425605.
[61] R. P. V. Dutne, J. C. Hulteen, D. A. Treichel, M. T. Smith, M. L. Duval, and T. R. Jensen, “Nanosphere lithography:size-tunable silver nanoparticle and surface cluster arrays,” J. Phys. Chem, B 103 (1999) 3854-3863.
[62] Q. Hao, H. Huang, X. Fan, Y. Yin, J. Wang, W. Li, T. Qiu, L. Ma, P. K. Chu, and O. G. Schmidt, “Controlled patterning of plasmonic dimers by using an ultrathin nanoporous alumina membrane as a shadow mask,” ACS Appl. Mater. Interfaces, 9 (2017) 36199-36250.
[63] L. D. Rafailović, C. Gammer, J. Srajer, T. Trišović, J. Rahel, and H. P. Karnthaler, “Surface enhanced Raman scattering of dendritic Ag nanostructures grown with anodic aluminium oxide,” RSC Adv, 6 (2016) 33348-33352.
[64] Y. Xu, M. Zhou, and Y. Lei, “Nanoarchitectured Array Electrodes for Rechargeable Lithium- and Sodium-Ion Batteries,” Adv. Energy Mater, 6 (2016) 1502514.
[65] A. L. Lipson, D. J. Comstock, and M. C. Hersam, “Nanoporous templates and membranes formed by nanosphere lithography and aluminum anodization,” Small, 5 (2009) 2807-11.
[65] F. M. Chang, S. L. Cheng, S. J. Hong, Y. J. Sheng, and H. K. Tsao, “Superhydrophilicity to superhydrophobicity transition of CuO nanowire films,” Appl. Phs. Lett. 96 (2010) 114101-1–114101-3. |