參考文獻 |
[1] 張沛元:世界氣象組織:2019年史上第二熱。自由時報電子報。2020年1月6日,檢自
https://news.ltn.com.tw/news/world/breakingnews/3041834。
[2] 張泉湧,全球氣候變遷-危機與轉機,五南圖書出版股份有限公司,台北市,2011。
[3] Peter Wadhams(著),消失中的北極,王念慈、吳煒聲、黃馨如(譯),采實出版集團,台北市,2017。
[4] 陳律安:聯合國WMO:去年二氧化碳濃度創新高增速超越十年平均,聯合新聞網網頁。(2019年11月25日),檢自
https://udn.com/news/story/6812/4187171。
[5] J. Ling, P. Xiao, A. Ntiamoah, D. Xu, P. Webley and Y. Zhai, Strategies for CO2 capture from different CO2 emission sources by vacuum swing adsorption technology, Chinese Journal of Chemical Engineering, vol. 24(4), pp. 460-467, 2016.
[6] 陳巾眉:【氣候變遷Q&A】(13) 什麼是碳捕捉與封存技術?碳捕集技術的主要形式,台灣環境資訊協會-環境資訊中心。2011年8月25日,檢自
https://e-info.org.tw/node/69594
[7] 李亨元:二氧化碳捕獲技術介紹(三)富氧燃燒,科技大觀園。2017年6月23日,檢自
https://scitechvista.nat.gov.tw/c/sffh.htm
[8] Y. Wang, L. Zhao, A. Otto, M. Robinius, D. Stolten, A review of post-combustion CO2 capture technologies from coal-fired power plants, Energy Procedia; vol. 114, pp.650-655, 2017
[9] 蔡蘊明:二氧化碳的回收和再利用,科學Online。2014年4月18日,檢自
https://highscope.ch.ntu.edu.tw/wordpress/?p=52817
[10] L. Riboldi and O. Bolland, Evaluating pressure swing adsorption as a CO2 separation technique in coal-fired power plants, International Journal of Greenhouse Gas Control, vol. 39, pp. 1-16, 2015.
[11] 賴君義(編)、王大銘、呂幸江、阮若屈、李亦宸、李岳憲、李魁然、安全福、洪維松、胡蒨傑、孫一明、崔玥、莊清榮、陳世雄、陳榮輝、高從堦、童國倫、黃書賢、游勝傑、楊台鴻、張雍、劉英麟、賴君義、賴振立、鍾台生、韓剛、羅林,薄膜科技概論,五南圖書出版股份有限公司,台北市,2019。
[12] 談駿嵩、王志盈,二氧化碳減量排放:二氧化碳捕獲,科技大觀園。2015年6月4日,檢自
https://scitechvista.nat.gov.tw/c/s2MH.htm
[13] J. Xu, Z. Wang, Z. Qiao, H. Wu, S. Dong, S. Zhao and J. Wang, Post-combustion CO2 capture with membrane process: practical membrane performance and appropriate pressure, Journal of Membrane Science, vol. 581, pp. 195–213, 2019.
[14] C. Y. Chuah, W. Li, S. Samarasinghe, G. Sethunga and T. H. Bae, Enhancing the CO2 separation performance of polymer membranes via the incorporation of amine-functionalized HKUST-1 nanocrystals, Microporous and Mesoporous Materials, vol. 290, pp. 109680, 2019.
[15] 蕭暐翰、王清海、談駿嵩,「以吸收與吸附捕獲CO2技術的發展現況」,工業材料雜誌,365期, 71-77頁,2017。
[16] T. S. Lee, J. H. Cho and S. H. Chi, Carbon dioxide removal using carbon monolith as electric swing adsorption to improve indoor air quality, Building and Environment, vol. 92, pp. 209-221, 2015.
[17] C. W. Skarstrom, Oxygen concentration process, US Patent 3237377A, 1996.
[18] P. G. D. Montgareuil and D. Domine, Process for separating a binary gaseous mixture by adsorption, US Patent 3155468A, 1964.
[19] R. T. Yang, Gas separation by pressure swing adsorption process, London: Imperial College Press, 1987.
[20] A. D. Wiheeb, Z. Helwani, J. Kim and M. R. Othman, Pressure swing adsorption technologies for carbon dioxide capture, Separation and Purification Reviews, vol. 45(2), pp. 108-121, 2016.
[21] B. K. Na, H. L. Lee, K. K. Koo and H. K. Song, Effect of rinse and recycle methods on the pressure swing adsorption process to recover CO2 from power plant flue gas using activated carbon, Industrial & Engineering Chemistry Research, vol. 41, pp. 5498-5503, 2002.
[22] J. J. Collins, Air separation by adsorption process, US Patent 386849A, 1993.
[23] S. Sircar, Separation of multicomponent gas mixtures, US Patent 4171206A, 1979.
[24] S. Sircar and T. C. Golden, Purifacation of hydrogen by pressure swing adsorption, Separation Science and Technology, vol. 35(5), pp. 667-687, 2000.
[25] L. Wang, Y. Yang, W. Shen, X. Kong, P. Ling, J. Yu and A. E. Rodrigues, CO2 capture from flue gas in an existing coal-fired power plant by two successive pilot-scale VPSA units, Industrial & Engineering Chemistry Research, vol. 52, pp. 7947-7955, 2013.
[26] R. T. Yang, Gas separation by adsorption process, London:Imperial College Press, 1987.
[27] A. K. Rajagopalan, A. M. Avila and A. Rajendran, Do adsorbent screening metrics predict process performance? A process optimisation based study for post-combustion capture of CO2, International journal of greenhouse gas control, vol. 46, pp.76-85, 2016.
[28] K. T. Chue, J. K. Kim, Y. J. Yoo, S. H. Cho and R. T. Yang, Comparison of activated carbon and zeolite 13X for CO2 recovery from flue gas by pressure swing adsorption, Industrial & Engineering Chemistry Research, vol. 34(2), pp. 437-449, 1995.
[29] Y. Takamura, S. Narita, J. Aoki, S. Hironaka and S. Uchida, Evaluation of dual-bed pressure swing adsorption for CO2 recovery from boiler exhaust gas, Separation and Purification Technology, vol. 24(3), pp. 519-528, 2001.
[30] J. A. Delgado, M. A. Uguina, J. L. Sotelo, V. I. Agueda, A. Sanz and P. Gomez, Numerical analysis of CO2 concentration and recovery from flue gas by a novel vacuum swing adsorption cycle, Computers & Chemical Engineering, vol. 35, pp. 1010-1019, 2011.
[31] R. Haghpanah, R. Nilam, A.Rajendran, S. Farooq and I. A. Karimi, Cycle synthesis and optimization of a VSA process for postcombustion CO2 capture, AIChE Journal, vol. 59(12), pp. 4735-4748, 2013.
[32] G. N. Nikolaidis, E. S. Kikkinides and M. C. Georgiadis, An integrated two-stage P/VSA process for postcombustion CO2 capture using combinations of adsorbents zeolite 13X and Mg-MOF-74, Industrial & Engineering Chemistry Research, vol. 56, pp. 974-988, 2017.
[33] M. Ishibashi, H. Ota, N. Akutsu, S. Umeda, M. Tajika, J. Izumi, A. Yasutake, T. Kabata, Y. Kageyama, Technology for removing carbon dioxide from power plant flue gas by the physical adsorption method, Energy Convers. Manage, vol. 37, pp. 929-933, 1996.
[34] B. K. Na, H. Lee, K. K. Koo and H. K. Song, Effect of rinse nad rccycle methods on the pressure swing adsorption process to recover CO2 from power plant flue gas using activated carbon, Industrial & Engineering Chemistry Research, vol. 41(22), pp. 5498-5503, 2002.
[35] S. H. Cho, J. H. Park, H. T. Beum, S. S. Han and J. N. Kim, A 2-stage PSA process for the recovery of CO2 from flue gas and its power consumption, Studies in Surface Science and Catalysis, vol. 153, pp. 405-410, 2014
[36] G. Li, P. Webley, J. Zhang, R. Singh and M.Marshall, Capture of CO2 from high humidity flue gas by vacuum swing adsorption with zeolite 13X, Adsorption, vol. 14, pp. 415-422, 2008.
[37] C. Shen, Z. Liu, P. Li and J. Yu, Two-stage VPSA process for CO2 capture from flue gas using activated carbon beads, Industrial & Engineering Chemistry Research, vol.51, pp. 5011-5021, 2012.
[38] L. Wang, Z. Liu, P. Li, J. Wang and J. Yu, CO2 capture from flue gas by two successive VPSA units using 13XAPG, Adsorption, vol. 18(5-6), pp. 445-459, 2012.
[39] S. Krishnamurthy, V. R. Rao, S. Guntuka, P. Sharratt, R. Haghpanah, A. Rajendran, M. Amanullah, I. A. Karimi and S. Farooq, CO2 capture from dry flue gas by vacuum swing adsorption: A pilot plant study, AIChE Journal, vol. 60(5), pp. 1830-1842, 2014.
[40] D. Wawrzyńczak, I. Majchrzak-Kuceba, K. Srokosz, M. Kozak, W. Nowak, J. Zdeb, W. Smolka and A. Zajchowski, The pilot dual-reflux vacuum pressure swing adsorption unit for CO2 capture from flue gas, Separation and Purification Technology, vol. 209, pp. 560-570, 2019.
[41] 郭家禎,利用三塔式真空變壓吸附法捕獲燃煤電廠煙道氣中二氧化碳之實驗研究,國立中央大學,碩士論文,民國109年。
[42] 林欣慧:分子篩,科學Online。2015年6月4日。檢自
https://highscope.ch.ntu.edu.tw/wordpress/?p=62920
[43] 張鈞翔,利用真空變壓吸附法捕獲發電廠煙道氣中二氧化碳之三塔實驗設計分析模擬研究,國立中央大學,碩士論文,民國109年。
[44] Methods and formulas for the effects plots in analyze factorial design, Minitab 18 support. 檢自
https://support.minitab.com/en-us/minitab/18/help-and-how-to/modeling-statistics/doe/how-to/factorial/analyze-factorial-design/methods-and-formulas/effects-plots/
[45] 余民寧,複線性迴歸(Multiple Linear Regression) ,國家教育研究院 雙語詞彙、學術名詞暨辭書資訊網。2000年12月,檢自
http://terms.naer.edu.tw/detail/1314019/
[46] 沈珍瑜,雙塔式變壓吸附法捕獲合成氣中二氧化碳之實驗設計分析,國立中央大學,碩士論文,民國107年。
[47] 黎正中、唐麗英,實驗設計與分析,高立圖書,新北市,2015。
[48] 鄭筑勻,以變壓吸附法捕獲發電廠煙道氣中二氧化碳之模擬研究與實驗設計分析,國立中央大學,碩士論文,民國108年。 |