參考文獻 |
1. Altemose, V. O. "Helium diffusion through glass." Journal of Applied Physics 32.7 (1961): 1309-1316.
2. Jackson, Kenneth A. Kinetic Processes: crystal growth, diffusion, and phase transformations in materials. John Wiley & Sons, 2006.
3. Pelleg, Joshua. Diffusion in ceramics. Springer International Publishing, 2016.
4. Shaw, Derek, ed. Atomic diffusion in semiconductors. Springer Science & Business Media, 2012.
5. Lampman, S. (1991). Introduction to surface hardening of steels. ASM International, ASM Handbook., 4, 259-267.
6. Mrowec, Stanisław. Defects and diffusion in solids: an introduction, Volume 5. Elsevier Scientific Pub. Co., 1980, 1980.
7. Mehrer, H. "Diffusion in solid metals and alloys." Landolt-Börnstein numerical data and functional relationships in science and technology, Group III 26 (1990).
8. Murch, Graeme E. Diffusion in crystalline solids. Academic Press, 2012.
9. Balluffi, Robert W., Samuel M. Allen, and W. Craig Carter. Kinetics of materials. John Wiley & Sons, 2005.
10. Ehrlich, Gert, and Kaj Stolt. "Surface diffusion." Annual Review of Physical Chemistry 31.1 (1980): 603-637.
11. Suzuoka, Toshiro. "Lattice and grain boundary diffusion in polycrystals." Transactions of the Japan Institute of Metals 2.1 (1961): 25-32.
12. Kaur, Inderjeet, Wolfgang Gust, and Yuri Mishin. Fundamentals of grain and interphase boundary diffusion. Chichester: Wiley, 1995.
13. Shewmon, Paul, ed. Diffusion in solids. Springer, 2016.
14. Matano, Chujiro. "On the relation between the diffusion-coefficients and concentrations of solid metals." Japanese Journal of Physics 8 (1933): 109-113.
15. Wierzba, Bartek, and Wojciech Skibiński. "The generalization of the Boltzmann–Matano method." Physica A: Statistical Mechanics and its Applications 392.19 (2013): 4316-4324.
16. Le Claire, A. D. "Solute diffusion in dilute alloys." Journal of Nuclear Materials 69 (1978): 70-96.
17. Murch, Graeme E. "Diffusion kinetics in solids." Phase Transformations in Materials (2001): 171-239.
18. Qiong, Wu, et al. "First principles calculations of alloying element diffusion coefficients in Ni using the five-frequency model." Chinese Physics B 21.10 (2012): 109102.
19. Mantina, M., et al. "First principles impurity diffusion coefficients." Acta Materialia 57.14 (2009): 4102-4108.
20. Howard, R. E., and JRt Manning. "Kinetics of solute-enhanced diffusion in dilute face-centered-cubic alloys." Physical Review 154.3 (1967): 561.
21. Tu, King-Ning. "Reliability challenges in 3D IC packaging technology." Microelectronics Reliability 51.3 (2011): 517-523.
22. Tu, King-Ning, and Yingxia Liu. "Recent advances on kinetic analysis of solder joint reactions in 3D IC packaging technology." Materials Science and Engineering: R: Reports 136 (2019): 1-12.
23. Xu, Tao, et al. "Solder size effect on interfacial reaction and growth behavior of Cu–Sn intermetallic compounds in cross-scale Sn3. 0Ag0. 5Cu/Cu joints between stacking TSV chips during step-reflow processes." 2019 20th International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2019.
24. Lee, Chaerin, et al. "Study of Electrodeposited High Entropy Single Element (HESE) Cu for Cu-Cu Direct Bonding." Meeting Abstracts. No. 24. The Electrochemical Society, 2019.
25. Pan, Jianbiao, et al. "Effect of gold content on the reliability of SnAgCu solder joints." IEEE Transactions on Components, Packaging and Manufacturing Technology 1.10 (2011): 1662-1669.
26. Lin, E. J., et al. "Effect of Cu solubility on electromigration in Sn (Cu) micro joint." Journal of Applied Physics 122.9 (2017): 095702.
27. Wu, John, et al. Materials 11.11 (2018): 2287. Lin, H., et al. Microelectronic Engineering 85.5-6 (2008): 1059-1061.
28. Rebhan, B et al.. Journal of Applied Physics 118.13 (2015): 135301.
29. OU, Xin, et al. "Au-Au Wafer Bonding in Vertical-Structure GaN LED Fabrication." Journal of Functional Materials and Devices 3 (2010): 17.
30. Chang, Moon-Hwan, et al. "Light emitting diodes reliability review." Microelectronics Reliability 52.5 (2012): 762-782.
31. Narendran, Nadarajah, et al. "Solid-state lighting: failure analysis of white LEDs." Journal of Crystal Growth 268.3-4 (2004): 449-456.
32. Köhler, K., et al. "Control of the Mg doping profile in III-N light-emitting diodes and its effect on the electroluminescence efficiency." Journal of applied physics 97.10 (2005): 104914.
33. Cao, X. A., S. F. LeBoeuf, and T. E. Stecher. "Temperature-dependent electroluminescence of AlGaN-based UV LEDs." IEEE electron device letters 27.5 (2006): 329-331.
34. Rebhan, B., and K. Hingerl. "Physical mechanisms of copper-copper wafer bonding." Journal of Applied Physics 118.13 (2015): 135301.
35. Chen, Chih, et al. "Low-temperature and low-pressure direct copper-to-copper bonding by highly (111)-oriented nanotwinned Cu." 2016 Pan Pacific Microelectronics Symposium (Pan Pacific). IEEE, 2016.
36. Tseng, C. H., Tu, K. N., & Chen, C. (2018). Comparison of oxidation in uni-directionally and randomly oriented Cu films for low temperature Cu-to-Cu direct bonding. Scientific reports, 8(1), 1-7.
37. Gueguen, Pierric, et al. "Copper direct-bonding characterization and its interests for 3D integration." Journal of the Electrochemical Society 156.10 (2009): H772-H776.
38. Lin, H., et al. Microelectronic Engineering 85.5-6 (2008)
39. Huang, Yan-Pin, et al. "Novel Cu-to-Cu Bonding With Ti Passivation at 180 ⁰C in 3-D Integration." IEEE electron device letters 34.12 (2013): 1551-1553.
40. Huang, Yan-Pin, et al. "Demonstration and electrical performance of Cu–Cu bonding at 150 C with Pd passivation." IEEE Transactions on Electron Devices 62.8 (2015): 2587-2592.
41. Ahlers, M. "The Hume-Rothery rules and phase stabilities in noble metal alloys." Zeitschrift für Physik B Condensed Matter 99.4 (1995): 491-499.
42. Chakraborty, J., U. Welzel, and E. J. Mittemeijer. "Mechanisms of interdiffusion in Pd–Cu thin film diffusion couples." Thin Solid Films 518.8 (2010).
43. Choi, SungSoon, and ByungJin Ma. "Corrosive tendency of Ag plated lead frame applied to white LED." 18th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). IEEE, 2011.
44. Chen, Y. H., et al. "Mechanism of Ag sulfurization resistance improvement by alloying solutes in Ag-based alloy films." Journal of Applied Physics 123.24 (2018): 245305.
45. Chen, Y. H., et al. "Sulfurization Study on the Ag and Ag-Pd Reflectors for GaN-Based LEDs." Journal of Electronic Materials 45.1 (2016): 191-196.
46. Zhang, Lei, et al. "Study on Ag-plated Cu lead frame and its effect to LED performance under thermal aging." IEEE Transactions on Device and Materials Reliability 14.4 (2014): 1022-1030.
47. Roy, Rita, and S. K. Sen. "The study of diffusion of copper in thin films of silver and Ag/Al alloys as a function of increasing aluminium concentration." Thin solid films 223.1 (1993): 189-195.
48. Bukaluk, Antoni. "Comparative aes studies of Cu diffusion through thin evaporated and ion-plated Ag/Sn films." Surface Science 213.2-3 (1989): 464-480.
49. Meinel, K., M. Klaua, and Ch Ammer. "Determination of concentration‐dependent diffusion coefficients from thin film/substrate interdiffusion." physica status solidi (a) 109.2 (1988): 525-529.
50. Grieseler, Rolf, et al. "Diffusion in thin bilayer films during rapid thermal annealing." physica status solidi (a) 211.11 (2014): 2635-2644.
51. Rooney, John J. "Eyring transition-state theory and kinetics in catalysis." Journal of Molecular Catalysis A: Chemical 96.1 (1995): L1-L3
52. Keusch, Peter. "Eyring equation." (2003).
53. Gattass, R. et al."Vacancy diffusion in silicon: analysis of transition state theory." Brazilian Journal of Physics 29.4 (1999).
54. Hayashi, E., Kurokawa, Y., & Fukai, Y. (1998), "Hydrogen-induced enhancement of interdiffusion in Cu-Ni diffusion couples." Phys. Rev. Lett., 80(25), 5588.
55. Masumura, R. A., Rath, B. B., & Pande, C. S., "Analysis of Cu–Ni diffusion in a spherical geometry for excess vacancy production." Acta Mater., 50(18), (2002) 4535-4544.
56. Iijima, Y., Hirano, K. I., & Kikuchi, M, "Determination of intrinsic diffusion coefficients in a wide concentration range of a Cu–Ni couple by the multiple markers method." Transactions of the Japan Institute of Metals, 23(1), (1982) 19-23.
57. Da Silva, Luiz C. Correa, and Robert F. Mehl. "Interface and marker movements in diffusion in solid solutions of metals." JOM 3.2 (1951): 155-173.
58. Funamizu, Yasuhiro, and Katsuya Watanabe. "Interdiffusion in the Al–Mg system." Transactions of the Japan Institute of Metals 13.4 (1972): 278-283.
59. Hall, P. M., J. M. Morabito, and N. T. Panousis. "Interdiffusion in the Cu/Au thin film system at 25° C to 250° C." Thin Solid Films 41.3 (1977): 341-361.
60. Tiwari, G. P., and R. S. Mehrotra. "Diffusion and melting." Defect and Diffusion Forum. Vol. 279. Trans Tech Publications Ltd, 2008.
61. Abdullah, Mikrajuddin, Shafira Khairunnisa, and Fathan Akbar. "Zipper model for the melting of thin films." European Journal of Physics 37.1 (2015): 015501.
62. Seith, Wolfgang. Diffusion of metals: exchange reactions. Vol. 4506. US Atomic Energy Commission, Division of Technical Information Extension, 1962.
63. Mehrer, Helmut. Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes. Vol. 155. Springer Science & Business Media, 2007.
64. Cai, Wei, and William D. Nix. Imperfections in crystalline solids. Cambridge University Press, 2016.
65. Nie, Yanguang, et al. "CuPd interface charge and energy quantum entrapment: A tight-binding and XPS investigation." Applied surface science 257.3 (2010): 727-730.
66. Laidler, K.J. and Meiser J.H. Physical Chemistry (Benjamin/Cummings 1982) p.381-2.
67. James H. Espenson Chemical Kinetics and Reaction Mechanisms (McGraw-Hill 2002), p.156-160.
68. Wang, Zhijun, Sheng Guo, and Chain Tsuan Liu. "Phase selection in high-entropy alloys: from nonequilibrium to equilibrium." Jom 66.10 (2014): 1966-1972.
69. Wolverton, Chris; Zunger, Alex (15 September 1995). "First-principles theory of short-range order, electronic excitations, and spin polarization in Ni-V and Pd-V alloys". Physical Review B. 52 (12): 8813–8828. Bibcode:1995PhRvB..52.8813W. doi:10.1103/PhysRevB.52.8813. PMID 9979872.
70. Nicholson, D. M. C.; Stocks, G. M.; Wang, Y.; Shelton, W. A.; Szotec, Z.; Temmerman, W. M. (15 November 1994). "Stationary nature of the density-functional free energy: Application to accelerated multiple-scattering calculations". Physical Review B. 50 (19): 14686. Bibcode:1994PhRvB..5014686N. doi:10.1103/PhysRevB.50.14686. PMID 9975710
71. Zhou, Fei; Maxisch, Thomas; Ceder, Gerbrand (2006). "Configurational Electronic Entropy and the Phase Diagram of Mixed-Valence Oxides: The Case of LixFePO4". Physical Review Letters. 97 (15): 155704. arXiv:cond-mat/0612163. Bibcode:2006PhRvL..97o5704Z. doi:10.1103/PhysRevLett.97.155704. PMID 17155339.
72. Fultz, Brent. "Vibrational thermodynamics of materials." Progress in Materials Science 55.4 (2010): 247-352.
73. Smith, Hillary L., et al. "Separating the configurational and vibrational entropy contributions in metallic glasses." Nature Physics 13.9 (2017): 900-905.
74. Dienes, G. J. "Entropies of Activation in Metallic Diffusion." Physical Review 89.1 (1953): 185.
75. Lenglet, M., et al. "Low temperature oxidation of copper: The formation of CuO." Materials research bulletin 30.4 (1995): 393-403.
76. Hasegawa, Masakatsu. "Ellingham diagram." Treatise on Process Metallurgy. Elsevier, 2014. 507-516.
77. Choudhary, Sumita, et al. "Oxidation mechanism of thin Cu films." AIP Advances 8.5 (2018): 055114.
78. D′Agostino, Alfred T. "Determination of thin metal film thickness by x-ray diffractometry using the Scherrer equation, atomic absorption analysis and transmission/reflection visible spectroscopy." Analytica chimica acta 262.2 (1992): 269-275.
79. Hersent, Emmanuel, Knut Marthinsen, and Erik Nes. "The effect of solute atoms on grain boundary migration: A solute pinning approach." Metallurgical and Materials Transactions A 44.7 (2013): 3364-3375. |