博碩士論文 104324055 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:35 、訪客IP:3.144.28.50
姓名 林而儒(Erh-Ju Lin)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 銅擴散在銀(鋅/錫)與受壓力鈀薄膜之研究
(Cu diffusion in Ag(Zn, Sn) and stressed Pd thin films)
相關論文
★ Au濃度Cu濃度體積效應於Sn-Ag-Cu無鉛銲料與Au/Ni表面處理層反應綜合影響之研究★ 薄型化氮化鎵發光二極體在銅填孔載具的研究
★ 248 nm準分子雷射對鋁薄膜的臨界破壞性質研究★ 無光罩藍寶石基材蝕刻及其在發光二極體之運用研究
★ N-GaN表面之六角錐成長機制及其光學特性分析★ 藍寶石基板表面和內部原子排列影響Pt薄鍍膜之de-wetting行為
★ 藍寶石基板表面原子對蝕刻液分子的屏蔽效應影響圖案生成行為及其應用★ 陽離子、陰離子與陰陽離子共摻雜對於p型氧化錫薄膜之電性之影響研究與陽離子空缺誘導模型建立
★ 通過水熱和溶劑熱法合成銅奈米晶體之研究★ 自生反應阻障層 Cu-Ni-Sn 化合物 在覆晶式封裝之研究
★ 含銅鎳之錫薄膜線之電致遷移研究★ 微量銅添加於錫銲點對電遷移效應的影響及 鎳金屬墊層在電遷移效應下消耗行為的研究
★ 電遷移誘發銅墊層消耗動力學之研究★ 不同無鉛銲料銦錫'錫銀銅合金與塊材鎳及薄膜鎳之濕潤研究
★ 錫鎳覆晶接點之電遷移研究★ 錫表面處理層之銅含量對錫鬚生長及介面反應之影響
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-19以後開放)
摘要(中) 在不影響線寬的前提下,3D IC可藉由垂直堆疊減少訊號傳輸路徑及均勻電流以增強訊號強度。為了避免固-液系統高鍵合溫度的製程產生的脆性界金屬化合物導致銲點可靠度不佳的問題,低溫固態交互擴散鍵合為關鍵技術。目前常用的銅銅擴散鍵合技術在鍵合過程中介面易氧化,導致接合品質不佳,因此需要抗氧化層的保護;其中鈀除了不易產生氧化反應、與銅沒有飽和溶解度的限制等優點,故此研究中,選用鈀金屬作為抗氧化層。此外,在低溫固態交互擴散鍵合的過程中,為有效降低鍵合溫度,鍵合過程中常施予適當之單軸壓力於材料上;然而相較於在過去被大量研究的三軸等壓對擴散的影響,單軸壓力的效應鮮少被提及,因此單軸壓力對於降低鍵合溫度達到良好的接合界面具有高度的研究價值。首先使用熱蒸鍍將鈀金屬化於鍍製的銅(220)優選面後置入石墨製具,施於垂直方向0 MPa, 125MPa 及250 MPa的單軸加壓熱退火實驗。透過Ar離子蝕刻與XPS元素分析,我們可以得到在不同退火時間、溫壓系統的Pd/Cu交互擴散縱深元素分布,並利用Boltzmann-Matano methods求得交互擴散係數後將(1) Erying equation基態與活化態的能差關係與(2)原子在固態晶體中三維簡諧震盪行為導入擴散行為進行討論。從實驗求得的活化焓與活化火商可以透過基態與活化態的動能差與震動火商回歸出的半經驗式應用於單軸壓力及退火溫度對於低溫固溶體交互擴散行為的預測。
GaN LED的可靠度中,固態鍵合製施予的熱及元件使用過程產生的廢熱皆會產生反射率大幅下降的現象,因此我們選用鋅與錫利用蒸鍍機鍍製銀(鋅/錫)合金,透過XPS表面的元素濃度分析與分峰,討論熱處理過程中(1)銀及銀(鋅/錫)合金表面的氧化物組成對反射率下降的影響,並透過XPS縱深元素濃度分布與分峰計算出(2)在銀/及銀(鋅/錫)合金層中的銅通量。
摘要(英) 3D IC can reduce the signal transmission path, vertical current conduction and uniform current by vertically stacking to enhance signals. In order to avoid the reliability problems of using a solid-liquid system at high bonding temperature to cause the brittle IMC formation at the joints in 3D IC, low-temperature solid-state interdiffusion bonding is a key technology. However, the common Cu-Cu diffusion bonding is easy to oxidize during the process, resulting in poor quality. Therefore, an anti-oxidation layer is needed. Pd is hard to oxidize and form solid solution with Cu. Further, in order to effectively reduce the bonding temperature, uniaxial stress is applied to the materials during the bonding process; however, comparing with the hydrostatic pressure which has been extensively studied in the past, the effect of uniaxial axial stress is rarely mentioned. Therefore, the uniaxial axial stress effect has high research values for promoting the phenomenon of interdiffusion to achieve a good bonding interface at low temperature. First, the Pd is metallized on the electro-plated Cu (220) by evaporation deposition, and placed in the special graphite cell with 0 MPa, 125 MPa, and 250 MPa in vertical direction. Through Ar ion etching and XPS element analysis, we can obtain the Pd/Cu interdiffusion depth distribution in different temperature and uniaxial axial stress, and use the Boltzmann-Matano methods to obtain the interdiffusion coefficients. Then, the relationship between the energy difference between (1) Erying equation ground state and activated state and (2) the 3-D harmonic oscillation of atoms in solid crystals are introduced into the diffusion behavior for discussion. The activation enthalpy and entropy obtained from the experiments can be used to predict the interdiffusion behavior of low temperature solid solutions by uniaxial axial stress and temperature effects through the regression of the difference in kinetic energy and vibrational entropy between the ground and the saddle state.
In the GaN LED reliability problems, due to the heat production from the solid-state bonding process and device working, the reflectance of plated Ag lead frame would decrease dramatically. We use Zn and Sn alloy with Ag in evaporation deposition, and discuss the effects of the oxide composition on (1) the resistance of reflectance decay by the element concentration analysis and peak separation on the Ag and Ag(Zn/Sn) surface and (2) the copper flux in the Ag and Ag(Zn/Sn) alloy layer by calculated the XPS depth element concentration distribution and peak splitting.
關鍵字(中) ★ 銅鈀合金
★ 交互擴散
★ 單軸加壓鍵合
★ 銀合金
★ 抗反射率下降
關鍵字(英)
論文目次 Abstract (Chinese)......................................i
Abstract (English).....................................ii
Table of contents.....................................iii
List of figures........................................iv
Chapter 1: Background...................................1
1.1 Introduction of solid-state diffusion............1
1.2 Mathematical equations and analysis techniques in
solid-state diffusion...........................3
1.3 Vacancy mechanism in solute-state diffusion......5
Chapter 2: Motivation..................................12
2.1 Bonding technology in vertical 3D-IC and thin-GaN
vertical LED....................................9
2.2 Pd-Cu binary solid-solution system..............12
2.3 Reliability of the Ag and Ag alloy coated lead
frame and reflector cup........................13
Chapter 3: The experiments procedure and analysis methods
............................................16
3.1 Pd/Cu interdiffusion under uniaxial compressive
stress.........................................16
3.2 Pd/Cu interdiffusion coefficients and activation
parameters calculation.........................17
3.3 Experimental procedure for the Ag/Cu reliability
...............................................18
3.4 Method to estimate Cu Flux in Ag, Ag(Zn, Sn)
during annealin................................19
Chapter 4: Uniaxial compressive stress effect on
interdiffusion..............................22
4.1 Results and discussions on interface movement and
intrinsic diffusivity..........................22
4.2 Mechanism of uniaxial stress on interdiffusion
activation enthalpy............................27
4.3 Mechanism of uniaxial stress on interdiffusion
activation entropy.............................31
Chapter 5: Cu flux in Ag, and Ag(Zn, Sn)...............34
5.1 Ag and Ag(Zn, Sn) reflectance and XPS depth
profile results................................34
5.2 Optical property of oxides and reflectance decay
after annealing................................39
5.3 Calculation of Cu flux in Ag, Ag(Zn, Sn) during
annealing......................................41
Chapter 6: Summary.....................................52
6.1 Summary of uniaxial compressive stress effect on
interdiffusion.................................52
6.2 Summary of alloying Ag effect on reflectance
decay..........................................52
References.............................................53
參考文獻 1. Altemose, V. O. "Helium diffusion through glass." Journal of Applied Physics 32.7 (1961): 1309-1316.
2. Jackson, Kenneth A. Kinetic Processes: crystal growth, diffusion, and phase transformations in materials. John Wiley & Sons, 2006.
3. Pelleg, Joshua. Diffusion in ceramics. Springer International Publishing, 2016.
4. Shaw, Derek, ed. Atomic diffusion in semiconductors. Springer Science & Business Media, 2012.
5. Lampman, S. (1991). Introduction to surface hardening of steels. ASM International, ASM Handbook., 4, 259-267.
6. Mrowec, Stanisław. Defects and diffusion in solids: an introduction, Volume 5. Elsevier Scientific Pub. Co., 1980, 1980.
7. Mehrer, H. "Diffusion in solid metals and alloys." Landolt-Börnstein numerical data and functional relationships in science and technology, Group III 26 (1990).
8. Murch, Graeme E. Diffusion in crystalline solids. Academic Press, 2012.
9. Balluffi, Robert W., Samuel M. Allen, and W. Craig Carter. Kinetics of materials. John Wiley & Sons, 2005.
10. Ehrlich, Gert, and Kaj Stolt. "Surface diffusion." Annual Review of Physical Chemistry 31.1 (1980): 603-637.
11. Suzuoka, Toshiro. "Lattice and grain boundary diffusion in polycrystals." Transactions of the Japan Institute of Metals 2.1 (1961): 25-32.
12. Kaur, Inderjeet, Wolfgang Gust, and Yuri Mishin. Fundamentals of grain and interphase boundary diffusion. Chichester: Wiley, 1995.
13. Shewmon, Paul, ed. Diffusion in solids. Springer, 2016.
14. Matano, Chujiro. "On the relation between the diffusion-coefficients and concentrations of solid metals." Japanese Journal of Physics 8 (1933): 109-113.
15. Wierzba, Bartek, and Wojciech Skibiński. "The generalization of the Boltzmann–Matano method." Physica A: Statistical Mechanics and its Applications 392.19 (2013): 4316-4324.
16. Le Claire, A. D. "Solute diffusion in dilute alloys." Journal of Nuclear Materials 69 (1978): 70-96.
17. Murch, Graeme E. "Diffusion kinetics in solids." Phase Transformations in Materials (2001): 171-239.
18. Qiong, Wu, et al. "First principles calculations of alloying element diffusion coefficients in Ni using the five-frequency model." Chinese Physics B 21.10 (2012): 109102.
19. Mantina, M., et al. "First principles impurity diffusion coefficients." Acta Materialia 57.14 (2009): 4102-4108.
20. Howard, R. E., and JRt Manning. "Kinetics of solute-enhanced diffusion in dilute face-centered-cubic alloys." Physical Review 154.3 (1967): 561.
21. Tu, King-Ning. "Reliability challenges in 3D IC packaging technology." Microelectronics Reliability 51.3 (2011): 517-523.
22. Tu, King-Ning, and Yingxia Liu. "Recent advances on kinetic analysis of solder joint reactions in 3D IC packaging technology." Materials Science and Engineering: R: Reports 136 (2019): 1-12.
23. Xu, Tao, et al. "Solder size effect on interfacial reaction and growth behavior of Cu–Sn intermetallic compounds in cross-scale Sn3. 0Ag0. 5Cu/Cu joints between stacking TSV chips during step-reflow processes." 2019 20th International Conference on Electronic Packaging Technology (ICEPT). IEEE, 2019.
24. Lee, Chaerin, et al. "Study of Electrodeposited High Entropy Single Element (HESE) Cu for Cu-Cu Direct Bonding." Meeting Abstracts. No. 24. The Electrochemical Society, 2019.
25. Pan, Jianbiao, et al. "Effect of gold content on the reliability of SnAgCu solder joints." IEEE Transactions on Components, Packaging and Manufacturing Technology 1.10 (2011): 1662-1669.
26. Lin, E. J., et al. "Effect of Cu solubility on electromigration in Sn (Cu) micro joint." Journal of Applied Physics 122.9 (2017): 095702.
27. Wu, John, et al. Materials 11.11 (2018): 2287. Lin, H., et al. Microelectronic Engineering 85.5-6 (2008): 1059-1061.
28. Rebhan, B et al.. Journal of Applied Physics 118.13 (2015): 135301.
29. OU, Xin, et al. "Au-Au Wafer Bonding in Vertical-Structure GaN LED Fabrication." Journal of Functional Materials and Devices 3 (2010): 17.
30. Chang, Moon-Hwan, et al. "Light emitting diodes reliability review." Microelectronics Reliability 52.5 (2012): 762-782.
31. Narendran, Nadarajah, et al. "Solid-state lighting: failure analysis of white LEDs." Journal of Crystal Growth 268.3-4 (2004): 449-456.
32. Köhler, K., et al. "Control of the Mg doping profile in III-N light-emitting diodes and its effect on the electroluminescence efficiency." Journal of applied physics 97.10 (2005): 104914.
33. Cao, X. A., S. F. LeBoeuf, and T. E. Stecher. "Temperature-dependent electroluminescence of AlGaN-based UV LEDs." IEEE electron device letters 27.5 (2006): 329-331.
34. Rebhan, B., and K. Hingerl. "Physical mechanisms of copper-copper wafer bonding." Journal of Applied Physics 118.13 (2015): 135301.
35. Chen, Chih, et al. "Low-temperature and low-pressure direct copper-to-copper bonding by highly (111)-oriented nanotwinned Cu." 2016 Pan Pacific Microelectronics Symposium (Pan Pacific). IEEE, 2016.
36. Tseng, C. H., Tu, K. N., & Chen, C. (2018). Comparison of oxidation in uni-directionally and randomly oriented Cu films for low temperature Cu-to-Cu direct bonding. Scientific reports, 8(1), 1-7.
37. Gueguen, Pierric, et al. "Copper direct-bonding characterization and its interests for 3D integration." Journal of the Electrochemical Society 156.10 (2009): H772-H776.
38. Lin, H., et al. Microelectronic Engineering 85.5-6 (2008)
39. Huang, Yan-Pin, et al. "Novel Cu-to-Cu Bonding With Ti Passivation at 180 ⁰C in 3-D Integration." IEEE electron device letters 34.12 (2013): 1551-1553.
40. Huang, Yan-Pin, et al. "Demonstration and electrical performance of Cu–Cu bonding at 150 C with Pd passivation." IEEE Transactions on Electron Devices 62.8 (2015): 2587-2592.
41. Ahlers, M. "The Hume-Rothery rules and phase stabilities in noble metal alloys." Zeitschrift für Physik B Condensed Matter 99.4 (1995): 491-499.
42. Chakraborty, J., U. Welzel, and E. J. Mittemeijer. "Mechanisms of interdiffusion in Pd–Cu thin film diffusion couples." Thin Solid Films 518.8 (2010).
43. Choi, SungSoon, and ByungJin Ma. "Corrosive tendency of Ag plated lead frame applied to white LED." 18th IEEE International Symposium on the Physical and Failure Analysis of Integrated Circuits (IPFA). IEEE, 2011.
44. Chen, Y. H., et al. "Mechanism of Ag sulfurization resistance improvement by alloying solutes in Ag-based alloy films." Journal of Applied Physics 123.24 (2018): 245305.
45. Chen, Y. H., et al. "Sulfurization Study on the Ag and Ag-Pd Reflectors for GaN-Based LEDs." Journal of Electronic Materials 45.1 (2016): 191-196.
46. Zhang, Lei, et al. "Study on Ag-plated Cu lead frame and its effect to LED performance under thermal aging." IEEE Transactions on Device and Materials Reliability 14.4 (2014): 1022-1030.
47. Roy, Rita, and S. K. Sen. "The study of diffusion of copper in thin films of silver and Ag/Al alloys as a function of increasing aluminium concentration." Thin solid films 223.1 (1993): 189-195.
48. Bukaluk, Antoni. "Comparative aes studies of Cu diffusion through thin evaporated and ion-plated Ag/Sn films." Surface Science 213.2-3 (1989): 464-480.
49. Meinel, K., M. Klaua, and Ch Ammer. "Determination of concentration‐dependent diffusion coefficients from thin film/substrate interdiffusion." physica status solidi (a) 109.2 (1988): 525-529.
50. Grieseler, Rolf, et al. "Diffusion in thin bilayer films during rapid thermal annealing." physica status solidi (a) 211.11 (2014): 2635-2644.
51. Rooney, John J. "Eyring transition-state theory and kinetics in catalysis." Journal of Molecular Catalysis A: Chemical 96.1 (1995): L1-L3
52. Keusch, Peter. "Eyring equation." (2003).
53. Gattass, R. et al."Vacancy diffusion in silicon: analysis of transition state theory." Brazilian Journal of Physics 29.4 (1999).
54. Hayashi, E., Kurokawa, Y., & Fukai, Y. (1998), "Hydrogen-induced enhancement of interdiffusion in Cu-Ni diffusion couples." Phys. Rev. Lett., 80(25), 5588.
55. Masumura, R. A., Rath, B. B., & Pande, C. S., "Analysis of Cu–Ni diffusion in a spherical geometry for excess vacancy production." Acta Mater., 50(18), (2002) 4535-4544.
56. Iijima, Y., Hirano, K. I., & Kikuchi, M, "Determination of intrinsic diffusion coefficients in a wide concentration range of a Cu–Ni couple by the multiple markers method." Transactions of the Japan Institute of Metals, 23(1), (1982) 19-23.
57. Da Silva, Luiz C. Correa, and Robert F. Mehl. "Interface and marker movements in diffusion in solid solutions of metals." JOM 3.2 (1951): 155-173.
58. Funamizu, Yasuhiro, and Katsuya Watanabe. "Interdiffusion in the Al–Mg system." Transactions of the Japan Institute of Metals 13.4 (1972): 278-283.
59. Hall, P. M., J. M. Morabito, and N. T. Panousis. "Interdiffusion in the Cu/Au thin film system at 25° C to 250° C." Thin Solid Films 41.3 (1977): 341-361.
60. Tiwari, G. P., and R. S. Mehrotra. "Diffusion and melting." Defect and Diffusion Forum. Vol. 279. Trans Tech Publications Ltd, 2008.
61. Abdullah, Mikrajuddin, Shafira Khairunnisa, and Fathan Akbar. "Zipper model for the melting of thin films." European Journal of Physics 37.1 (2015): 015501.
62. Seith, Wolfgang. Diffusion of metals: exchange reactions. Vol. 4506. US Atomic Energy Commission, Division of Technical Information Extension, 1962.
63. Mehrer, Helmut. Diffusion in solids: fundamentals, methods, materials, diffusion-controlled processes. Vol. 155. Springer Science & Business Media, 2007.
64. Cai, Wei, and William D. Nix. Imperfections in crystalline solids. Cambridge University Press, 2016.
65. Nie, Yanguang, et al. "CuPd interface charge and energy quantum entrapment: A tight-binding and XPS investigation." Applied surface science 257.3 (2010): 727-730.
66. Laidler, K.J. and Meiser J.H. Physical Chemistry (Benjamin/Cummings 1982) p.381-2.
67. James H. Espenson Chemical Kinetics and Reaction Mechanisms (McGraw-Hill 2002), p.156-160.
68. Wang, Zhijun, Sheng Guo, and Chain Tsuan Liu. "Phase selection in high-entropy alloys: from nonequilibrium to equilibrium." Jom 66.10 (2014): 1966-1972.
69. Wolverton, Chris; Zunger, Alex (15 September 1995). "First-principles theory of short-range order, electronic excitations, and spin polarization in Ni-V and Pd-V alloys". Physical Review B. 52 (12): 8813–8828. Bibcode:1995PhRvB..52.8813W. doi:10.1103/PhysRevB.52.8813. PMID 9979872.
70. Nicholson, D. M. C.; Stocks, G. M.; Wang, Y.; Shelton, W. A.; Szotec, Z.; Temmerman, W. M. (15 November 1994). "Stationary nature of the density-functional free energy: Application to accelerated multiple-scattering calculations". Physical Review B. 50 (19): 14686. Bibcode:1994PhRvB..5014686N. doi:10.1103/PhysRevB.50.14686. PMID 9975710
71. Zhou, Fei; Maxisch, Thomas; Ceder, Gerbrand (2006). "Configurational Electronic Entropy and the Phase Diagram of Mixed-Valence Oxides: The Case of LixFePO4". Physical Review Letters. 97 (15): 155704. arXiv:cond-mat/0612163. Bibcode:2006PhRvL..97o5704Z. doi:10.1103/PhysRevLett.97.155704. PMID 17155339.
72. Fultz, Brent. "Vibrational thermodynamics of materials." Progress in Materials Science 55.4 (2010): 247-352.
73. Smith, Hillary L., et al. "Separating the configurational and vibrational entropy contributions in metallic glasses." Nature Physics 13.9 (2017): 900-905.
74. Dienes, G. J. "Entropies of Activation in Metallic Diffusion." Physical Review 89.1 (1953): 185.
75. Lenglet, M., et al. "Low temperature oxidation of copper: The formation of CuO." Materials research bulletin 30.4 (1995): 393-403.
76. Hasegawa, Masakatsu. "Ellingham diagram." Treatise on Process Metallurgy. Elsevier, 2014. 507-516.
77. Choudhary, Sumita, et al. "Oxidation mechanism of thin Cu films." AIP Advances 8.5 (2018): 055114.
78. D′Agostino, Alfred T. "Determination of thin metal film thickness by x-ray diffractometry using the Scherrer equation, atomic absorption analysis and transmission/reflection visible spectroscopy." Analytica chimica acta 262.2 (1992): 269-275.
79. Hersent, Emmanuel, Knut Marthinsen, and Erik Nes. "The effect of solute atoms on grain boundary migration: A solute pinning approach." Metallurgical and Materials Transactions A 44.7 (2013): 3364-3375.
指導教授 劉正毓 審核日期 2020-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明