博碩士論文 107324059 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:31 、訪客IP:3.135.186.76
姓名 鍾永智(Yong-Zhi Zhong)  查詢紙本館藏   畢業系所 化學工程與材料工程學系
論文名稱 製備具熱敏性之可拉伸導電薄膜以應用 於肌肉組織工程
(Preparation of Stretchable Conductive Films with Thermosensitivity for Muscle Tissue Engineering Application)
相關論文
★ 利用穿膜胜肽改善帶正電高分子之轉染效率★ 利用導電高分子聚吡咯為基材以電刺激促進幹細胞分化
★ 以電刺激增進骨髓基質細胞骨分化之最佳化探討★ 利用電場控制導電性高分子以進行基因於聚電解質多層膜的組裝
★ 以短鏈胜肽接枝聚乙烯亞胺來進行基因輸送應用之研究★ 電紡絲製備褐藻酸鈉/聚己內酯之奈米複合纖維進行原位轉染
★ 電場對於複合奈米絲進行原位基因傳送之影響★ 利用電場調控聚電解質多層膜的釋放 以應用於基因輸送
★ 發展載藥電紡聚乳酸/多壁奈米碳管/聚乙二醇纖維★ 利用寡聚精胺酸促進去氧寡核苷酸輸送
★ 利用聚己內酯/褐藻酸鈉之複合電紡絲擴增癌症幹細胞★ 以二元體形式之Indolicidin 應用於去氧寡核苷酸之輸送
★ Indolicidin之色胺酸殘基對於轉染效率的影響★ Indolicidin之二聚體形式對輸送去氧寡核?酸的影響
★ 搭建可提供電刺激與機械刺激之生物反應器★ 硬脂基化的Indolicidin作為傳送質體去氧核 酸的非病毒載體
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 機械和電訊號對肌肉生成有正向作用。在我們先前研究中成功地以聚二甲基矽氧烷(PDMS)薄膜作為彈性基底將導電高分子聚吡咯(PPy)製備於其上得到高拉伸性導電薄膜。可用於組裝生物反應器對細胞進行拉伸及電刺激。然而,如何將刺激過後的細胞完整取下來應用於後續肌肉修復是一大挑戰。因此本研究將製備同時具有導電性及溫敏性的薄膜,並以小鼠骨骼成肌細胞C2C12作為研究對象,研究所開發薄膜是否合適對貼附的細胞進行拉伸跟電刺激,並探討降溫細胞脫附後細胞外基質及肌管排列是否得以保留。在電刺激的部份我們發現此薄膜上的細胞在1 V/cm的電場刺激下有最好效果。在細胞排列實驗中9%循環拉伸促使C2C12沿著與拉伸方向垂直的方向進行高度排列。而複合刺激實驗中其中細胞排列取決於拉伸方向,可得到高度分化且排列的肌管。在西方點墨的實驗中,證實利用降溫得到的細胞片相較於傳統胰蛋白酶消化細胞方法仍保有細胞外基質 。qPCR結果證實拉伸刺激或電刺激皆能夠增加分化標誌基因的表達,肌球重鏈蛋白(MHC)免疫染色實驗指出兩種刺激都會有效地增加肌管的數量及提升分化率,且拉伸刺激有助於控制肌管的排列。與單一刺激相比,複合刺激不僅保有維持肌管排列的效果,還能使分化標誌基因更加上調控或維持高水準,並在降溫脫附後仍保留這些排列的肌管。這些結果證實本研究所開發的可助於收集拉伸及電刺激過後的細胞片,以作為組織工程及再生醫學上的應用。
摘要(英) In our previous study, our lab has successfully deposited conductive polypyrrole (PPy) onto elastic polydimethylsiloxane (PDMS) substrate to obtain a highly stretchable conductive film. It can be used to construct a bioreactor to cyclicaly stretch and electrically stimulate surface cells. However, how to completely harvest these stimulated muscle tissue to repair damage muscle is a challenge. Therefore, in this study, we intend to develop a polymer film owns both conductivity and thermo-sensitivity. Therefore, cells after stimulation can be completely harvested as cell sheets through breducing temperature. Mouse skeletal myoblast, C2C12 cells, were applied to examine our hypothesis. In electrical stimulation, C2C12 cells demonstrated the best myo-differentiation under the electric field of 1 V/cm. Regarding cyclic stretching, the strain equal to or higher than 9% can highly align C2C12 perpendicular to the stretching direction. The Western blotting experiments demonstrated that the cell sheets harvested by cooling reserved more extracellular matrix (ECM) than cells collected by the traditional trypsin digestion method. The qPCR results revealed that both cyclic stretching and electrical treatment increased the expression of differentiation myogenic marker genes. Immunostaining of myosin heavy chain protein (MHC) indicated that both mechanical and electrical stimuli effectively increased the number of myotubes and the differentiation ratio, and the myotubes can be aligned by the cyclic stretching. Compared the sole stimulation, dual stimulation not only aligned myotubes, but also highly increased the up-regulation myogenic differentiation markers. Stimulated cell sheets can be harvested by cooling and the alignment of myotubes was still maintained. These results suggested that our developed polymeric film can be applied to harvest intact cell sheets after cyclic stretching and electrical stimulation, which increased the feasibility bioreactor for the application of tissue engineering and regenerative medicine.
關鍵字(中) ★ 熱敏
★ 導電
★ 機電刺激
★ 細胞
關鍵字(英)
論文目次 摘要 III
Abstract VI
目錄 VII
表目錄 XII
第一章 緒論 1
1-1 研究背景 1
1-2 研究目的 2
第二章 文獻回顧 4
2-1 細胞片工程 4
2-2 細胞片工程應用於心肌缺血修復 9
2-3 細胞片工程應用於心肌缺血修復 10
2-4 細胞片工程應用於血管修復 11
2-5 細胞片工程應用於膀胱修復 11
2-6 熱敏高分子 12
2-6-1熱敏高分子聚合 13
2-6-2熱敏高分子與彈性分子結合 14
2-6-3熱敏高分子與導電性分子結合 15
2-7生物刺激細胞收穫裝置 15
第三章 實驗藥品、儀器及方法 18
3-1 實驗藥品 18
3-1-1 材料製備藥品 18
3-1-2 生物實驗藥品 19
3-2 實驗儀器 25
3-3 實驗方法 27
3-3-1 設計、組裝生物刺激裝置 27
3-3-2 電阻量測 34
3-3-3 細胞培養、繼代、冷凍及解凍 35
3-3-4 分化血清配製及肌管分化 37
3-3-5 循環拉伸對肌管分化的影響 38
3-3-6 電刺激對肌管分化的影響 41
3-3-7 拉伸/電複合刺激對肌管分化的影響 42
3-3-8 膜對生物活性之影響 44
3-3-9 MHC免疫螢光染色及分析 46
3-3-10 細胞排列分析 48
3-3-11 即時聚合酶反應儀 (Real-time PCR) 49
3-3-12 細胞脫附 57
3-3-13 西方點墨 (Western blot) 57
第四章 結果與討論 60
4-1 材料性質 60
4-1-1 ATR-FTIR分析 60
4-1-2 XPS分析 62
4-1-3 SEM 分析 65
4-1-4 表面接觸角測量 66
4-1-5 薄膜透光度分析 68
4-2 拉伸和電阻測試 70
4-2-1 裝置電阻之測試 70
4-2-2 裝置通電阻之溫度量測 72
4-3生物活性分析 73
4-3-1 MTT分析 73
4-3-2 拉伸對C2C12排列之影響 75
4-4-3 循環拉伸對C2C12分化之影響 79
4-4-4 電刺激對C2C12分化之影響 82
4-4-5 複合刺激對C2C12分化之影響 84
5-1細胞脫附 96
5-1-1 細胞脫附 96
5-1-2 細胞免疫螢光染色 100
5-1-3 細胞片蛋白質分析 100
5-1-4 細胞片Live /Dead 分析 101
結論 103
參考文獻 105
參考文獻 1. Yan, W., et al., Tissue engineering of skeletal muscle. Tissue Eng, 2007. 13(11): p. 2781-90.
2. Qazi, T.H., et al., Cell therapy to improve regeneration of skeletal muscle injuries. J Cachexia Sarcopenia Muscle, 2019. 10(3): p. 501-516.
3. Lv, S., et al., Designed biomaterials to mimic the mechanical properties of muscles. Nature, 2010. 465(7294): p. 69-73.
4. Bayati, V., et al., The evaluation of cyclic uniaxial strain on myogenic differentiation of adipose-derived stem cells. Tissue & Cell, 2011. 43(6): p. 359-366.
5. Ahadian, S., et al., Electrical stimulation as a biomimicry tool for regulating muscle cell behavior. Organogenesis, 2013. 9(2): p. 87-92.
6. Fujita, H., T. Nedachi, and M. Kanzaki, Accelerated de novo sarcomere assembly by electric pulse stimulation in C2C12 myotubes. Experimental Cell Research, 2007. 313(9): p. 1853-1865.
7. Yoon, J.K., et al., Thermosensitive, Stretchable, and Piezoelectric Substrate for Generation of Myogenic Cell Sheet Fragments from Human Mesenchymal Stem Cells for Skeletal Muscle Regeneration. Advanced Functional Materials, 2017. 27(48).
8. Okano, T., [Cell sheet engineering]. Rinsho Shinkeigaku, 2006. 46(11): p. 795-8.
9. Yang, J., M. Yamato, and T. Okano, Cell-sheet engineering using intelligent surfaces. Mrs Bulletin, 2005. 30(3): p. 189-193.
10. Jun, I., et al., Spatially Assembled Bilayer Cell Sheets of Stem Cells and Endothelial Cells Using Thermosensitive Hydrogels for Therapeutic Angiogenesis. Advanced Healthcare Materials, 2017. 6(9).
11. Higuchi, A., et al., Photon-modulated changes of cell attachments on poly(spiropyran-co-methyl methacrylate) membranes. Biomacromolecules, 2004. 5(5): p. 1770-1774.
12. Juthani, N., et al., Infused polymers for cell sheet release. Scientific Reports, 2016. 6.
13. Baek, J., et al., A Surface-Tailoring Method for Rapid Non-Thermosensitive Cell-Sheet Engineering via Functional Polymer Coatings. Advanced Materials, 2020. 32(16).
14. Harada, S., et al., Smooth muscle cell sheet transplantation preserve cardiac function and minimize cardiac remodeling in a rat myocardial infarction model. Journal of Cardiothoracic Surgery, 2016. 11.
15. Iseoka, H., et al., Role and therapeutic effects of skeletal muscle-derived non-myogenic cells in a rat myocardial infarction model. Stem Cell Research & Therapy, 2020. 11(1).
16. Miyagawa, S., et al., Impaired Myocardium Regeneration With Skeletal Cell Sheets-A Preclinical Trial for Tissue-Engineered Regeneration Therapy. Transplantation, 2010. 90(4): p. 364-372.
17. Wang, Z.F., et al., Osteogenic and angiogenic lineage differentiated adipose-derived stem cells for bone regeneration of calvarial defects in rabbits. Journal of Biomedical Materials Research Part A, 2020.
18. Imamura, T., et al., Engineered Bone Marrow-Derived Cell Sheets Restore Structure and Function of Radiation-Injured Rat Urinary Bladders. Tissue Engineering Part A, 2015. 21(9-10): p. 1600-1610.
19. Wang, Y., et al., Bioengineered bladder patches constructed from multilayered adipose-derived stem cell sheets for bladder regeneration. Acta Biomaterialia, 2019. 85: p. 131-141.
20. Nash, M.E., et al., Cell and cell sheet recovery from pNIPAm coatings; motivation and history to present day approaches. Journal of Materials Chemistry, 2012. 22(37): p. 19376-19389.
21. Xia, Y., et al., Thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules, 2005. 38(14): p. 5937-5943.
22. Gao, Z.G., et al., Synthesis of end-functionalized poly(N-isopropylacrylamide) with group of asymmetrical phthalocyanine via atom transfer radical polymerization and its photocatalytic oxidation of Rhodamine B. Polymer Chemistry, 2011. 2(11): p. 2590-2596.
23. Xia, Y., N.A.D. Burke, and H.D.H. Stover, End group effect on the thermal response of narrow-disperse poly(N-isopropylacrylamide) prepared by atom transfer radical polymerization. Macromolecules, 2006. 39(6): p. 2275-2283.
24. Liu, Z., et al., Well-defined poly(N-isopropylacrylamide) with a bifunctional end-group: synthesis, characterization, and thermoresponsive properties. Designed Monomers and Polymers, 2013. 16(5): p. 465-474.
25. Hu, X.B., Z. Tong, and L.A. Lyon, Control of Poly(N-isopropylacrylamide) Microgel Network Structure by Precipitation Polymerization near the Lower Critical Solution Temperature. Langmuir, 2011. 27(7): p. 4142-4148.
26. Rayatpisheh, S., P. Li, and M.B. Chan-Park, Argon-Plasma-Induced Ultrathin Thermal Grafting of Thermoresponsive pNIPAm Coating for Contractile Patterned Human SMC Sheet Engineering. Macromolecular Bioscience, 2012. 12(7): p. 937-945.
27. Ma, D., et al., Preparation and characterization of thermo-responsive PDMS surfaces grafted with poly(N-isopropylacrylamide) by benzophenone-initiated photopolymerization. Journal of Colloid and Interface Science, 2009. 332(1): p. 85-90.
28. Ma, D., et al., Thermomodulated cell culture/harvest in polydimethylsiloxane microchannels with poly(N-isopropylacrylamide)-grafted surface. Biomicrofluidics, 2010. 4(4).
29. Kim, H., K. Kim, and S.J. Lee, Nature-inspired thermo-responsive multifunctional membrane adaptively hybridized with PNIPAm and PPy. Npg Asia Materials, 2017. 9.
30. Marina, S., et al., New electroactive macromonomers and multi-responsive PEDOT graft copolymers. Polymer Chemistry, 2018. 9(27): p. 3780-3790.
31. Kim, S.J., et al., Stretchable and Transparent Biointerface Using Cell-Sheet-Graphene Hybrid for Electrophysiology and Therapy of Skeletal Muscle. Advanced Functional Materials, 2016. 26(19): p. 3207-3217.
32. Jo, H., et al., Electrically conductive graphene/polyacrylamide hydrogels produced by mild chemical reduction for enhanced myoblast growth and differentiation. Acta Biomaterialia, 2017. 48: p. 100-109.
33. Yoon, J.K., et al., Stretchable Piezoelectric Substrate Providing Pulsatile Mechanoelectric Cues for Cardiomyogenic Differentiation of Mesenchymal Stem Cells. Acs Applied Materials & Interfaces, 2017. 9(27): p. 22101-22111.
34. Heher, P., et al., A novel bioreactor for the generation of highly aligned 3D skeletal muscle-like constructs through orientation of fibrin via application of static strain. Acta Biomaterialia, 2015. 24: p. 251-265.
35. Ostrovidov, S., et al., Three-dimensional co-culture of C2C12/PC12 cells improves skeletal muscle tissue formation and function. Journal of Tissue Engineering and Regenerative Medicine, 2017. 11(2): p. 582-595.
36. Hollenberg, S.M., P.F. Cheng, and H. Weintraub, Use of a Conditional Myod Transcription Factor in Studies of Myod Transactivation and Muscle Determination. Proceedings of the National Academy of Sciences of the United States of America, 1993. 90(17): p. 8028-8032.
37. Lau, P., et al., ROR alpha regulates the expression of genes involved in lipid homeostasis in skeletal muscle cells - Caveolin-3 and CPT-1 are direct targets of ROR. Journal of Biological Chemistry, 2004. 279(35): p. 36828-36840.
38. Ahadian, S., et al., Hydrogels containing metallic glass sub-micron wires for regulating skeletal muscle cell behaviour. Biomaterials Science, 2015. 3(11): p. 1449-1458.
39. 楊士永, 搭建可提供電刺激與機械刺激之生物反應器. 2018.
40. Yang, J., Y. Dong, and J. Nie, Produce a Temperature-Sensitivity Film Coated On the Glass Via
Photopolymerization.
41. Li, C., Y.T. Hsu, and W.W. Hu, The Regulation of Osteogenesis Using Electroactive Polypyrrole Films. Polymers, 2016. 8(7).
42. David, G., et al., Poly(N-isopropylacrylamide)/poly[(N-acetylimino)ethylene] thermosensitive block and graft copolymers. European Polymer Journal, 2003. 39(6): p. 1209-1213.
43. Lanzalaco, S. and E. Armelin, Poly(N-isopropylacrylamide) and Copolymers: A Review on Recent Progresses in Biomedical Applications. Gels, 2017. 3(4).
44. Filippov, S.K., et al., Internal Nanoparticle Structure of Temperature-Responsive Self-Assembled PNIPAM-b-PEG-b-PNIPAM Triblock Copolymers in Aqueous Solutions: NMR, SANS, and Light Scattering Studies. Langmuir, 2016. 32(21): p. 5314-23.
45. Goldyn, A.M., et al., Force-induced cell polarisation is linked to RhoA-driven microtubule-independent focal-adhesion sliding. Journal of Cell Science, 2009. 122(20): p. 3644-3651.
46. Egusa, H., et al., Application of Cyclic Strain for Accelerated Skeletal Myogenic Differentiation of Mouse Bone Marrow-Derived Mesenchymal Stromal Cells with Cell Alignment. Tissue Engineering Part A, 2013. 19(5-6): p. 770-782.
47. Charest, J.L., A.J. Garcia, and W.P. King, Myoblast alignment and differentiation on cell culture substrates with microscale topography and model chemistries. Biomaterials, 2007. 28(13): p. 2202-2210.
48. Palama, I.E., et al., Modulation of alignment and differentiation of skeletal myoblasts by biomimetic materials. Integrative Biology, 2012. 4(10): p. 1299-1309.
49. Ravikumar, K., et al., Synergistic effect of polymorphism, substrate conductivity and electric field stimulation towards enhancing muscle cell growth in vitro. Rsc Advances, 2016. 6(13): p. 10837-10845.
50. Puri, P.L., et al., Uncoupling of p21 induction and MyoD activation results in the failure of irreversible cell cycle arrest in doxorubicin-treated myocytes. Journal of Cellular Biochemistry, 1997. 66(1): p. 27-36.
51. Hasty, P., et al., Muscle Deficiency and Neonatal Death in Mice with a Targeted Mutation in the Myogenin Gene. Nature, 1993. 364(6437): p. 501-506.
52. Llucia-Valldeperas, A., et al., Electromechanical Conditioning of Adult Progenitor Cells Improves Recovery of Cardiac Function After Myocardial Infarction. Stem Cells Translational Medicine, 2017. 6(3): p. 970-981.
53. Bassett CA , et al., In vivo effects of direct current in the mandible. 1976.
54. Nakao, M., et al., Phenotypic traits of mesenchymal stem cell sheets fabricated by temperature-responsive cell culture plate: structural characteristics of MSC sheets. Stem Cell Research & Therapy, 2019. 10(1).
55. Wang, P.Y., H.T. Yu, and W.B. Tsai, Modulation of Alignment and Differentiation of Skeletal Myoblasts by Submicron Ridges/Grooves Surface Structure. Biotechnology and Bioengineering, 2010. 106(2): p. 285-294.
56. Corona, B.T., et al., Further development of a tissue engineered muscle repair construct in vitro for enhanced functional recovery following implantation in vivo in a murine model of volumetric muscle loss injury. Tissue Eng Part A, 2012. 18(11-12): p. 1213-28.
指導教授 胡威文(Wei-Wen Hu) 審核日期 2020-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明