博碩士論文 103683005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:18.217.195.183
姓名 林榮潤(Jung-Jun Lin)  查詢紙本館藏   畢業系所 太空科學研究所
論文名稱 整合遙測與GIS技術應用於地下水與坡地災害之研究
(Applications of Remote Sensing and GIS Techniques for the Research of Groundwater and Slope Disasters)
相關論文
★ 應用多時期MODIS衛星影像分析於蒙古地區整合型乾旱強度指標之研究★ WVR、GPS及氣球探空觀測可降水量之比較
★ GPS斷層掃描估算大氣濕折射係數模式★ GPS觀測大氣閃爍之研究
★ GPS 氣象中地面氣象模式之改進★ 由GPS信號反演大氣濕折射度之數值模擬
★ 近即時GPS觀測可降水技術之研究★ 利用水氣資訊改善降水估計之研究
★ GPS掩星觀測反演與反演誤差探討★ 微波輻射計數位相關器之設計與實現
★ GPS與探空氣球資料觀測可降水量 與降雨之關係★ 利用GPS訊號估算對流層斜向水氣含量之研究
★ 利用遙測影像反演水稻田蒸發散量 之研究★ 利用MODIS影像反演嘉義地區水稻田蒸發散量之研究
★ 利用MODIS影像於水稻田蒸發散之研究★ 分析以全球定位系統近即時估計可降水之可行性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 受全球氣候變遷的影響,近年來重大的乾旱、水災與地質災害頻生,使得臺灣地區飽受缺水、洪氾、山崩與土石流等天然災害之苦。全面進行區域水文地質的調查與分析,將有助於水資源及國土資源之完整規劃與保護。本研究考量現地調查需要耗費大量人力與經費,且無法遍及廣域的範圍及獲得多時序的資料,蒐集國內、外有關水文議題之衛星任務與文獻,提出多元的衛星遙測與GIS技術整合成果,搭配現地觀測以及模式分析比對,進而提取區域水資源與坡地災害訊息。本研究針對臺灣山區替代性水資源開發、平原區水資源保育及坡地防災所面臨的關鍵課題,分別提出:山區地下水潛能場址評估、平原區地下水入滲判釋、土壤含水量反演與坡地防災應用等議題。
研究成果指出,臺灣山區因板塊運動作用,造成複雜的地形與地質環境,欲瞭解區域的地下水蘊藏之影響因子,本研究蒐集了經濟部中央地質調查所的比例尺五萬分之一數值地質圖,以及空間解析度為30 m x 30 m的ASTER的全球數值高程圖(GDEM)與Landsat衛星影像,分別進行水文地質單元劃分、坡度、地形濕度指標與水系密度等GIS空間分析、以及線性密度與土壤濕度等衛星影像處理及計算,綜合評比繪製出常規化地下水潛能指標與分布圖,且比對現地72個地下水觀測井之井出水量,發現該指標與井出水量有其正相關性,而指標值選擇0.63,作為判釋地下水潛能場址與非潛能場址之閥值,其準確性可達84.7%,故具有高效益評估的實用性。平原區地下水入滲判釋以台中盆地為例,創新結合遙測與GIS技術及水文模式分析成果,提供工程實務之應用,透過Landsat與MODIS衛星影像分析成果,比對WetSpass水文模式評估成果進行驗證,有效地提供人為活動影響程度少的地下水入滲潛勢區之判釋。坡地防災應用方面,建立了嘉義縣油車寮崩塌地鄰近區域之ATI-MODIS反演土壤含水量模式,及2009年莫拉克颱風事件後SPOT影像判釋之山崩目錄,由於颱風降雨事件後所發生的崩塌地,在事件前土壤含水量已相對較高,於降雨事件後,增加了更多的土壤含水量,使得岩層的孔隙水壓增加且有效應力減少,故導致誘發坡地災害之可能性;而在油車寮崩塌地中,搭配現地觀測成果及Landsat線性構造分析,可提供判釋該區域的優勢水流路徑與高潛勢致災區,作為後續治理工程規劃與評估之參考。因此,透過多元的衛星影像處理及GIS技術,並比對現地調查成果,有助於水資源開發與保育及坡地防災等議題,提供高經濟效益之評估成果,以作為後續產、官、學、研等單位之參考依據與應用。
摘要(英) Natural disasters might have become more severely and occur more frequently worldwide due to the influence of global change in recent years. Taiwan, located in the subtropical monsoon climatic zone and arc-continent collision between the Luzon volcanic arc and the Eurasian continent, suffers from the natural disasters, such as drought, flood, geohazard. Its annual precipitation is about 2.5 times higher than the world’s average. Its complex geological terrain, uneven spatiotemporal distribution of rainfall may cause slope disaster and water scarcity. As a result, water supply available to the people per capital is only 20% of the world’s average. Comprehensive investigation is necessary for the decision-makers of natural resources management. However, due to extremely high cost of pointwise exploration with inconvenience in conducting on-site campaign in remote areas, remote sensing technique becomes an alternative solution. To achieve cost effectiveness on groundwater exploration and geohazard analysis, the use of comprehensive remote sensing (RS) data and GIS-based models appears to be feasible.
The results of this study shows that, in the mountainous regions, seven categories of terrains were defined by topographic position index, topographic wetness index and slope degree. Seventeen hydrogeological units were delineated from digital geological maps. Besides, the regional lineament and abnormal surface temperature favorable to groundwater have been considered and derived from remote sensing data. Compared with in-situ well yield data, the accuracy of the interpreted groundwater potential site (GWPS) varied with rock types and terrains. However, assessing the normalized groundwater potential index in the comprehensive RS-GIS model has improved the results to achieve a cost-effective objective in terms of identifying GWPS. The accuracy of the interpretation of groundwater potential sites is improved from 48.6% to 84.7%. In the case of Taichung Basin, integrating GIS, Landsat and MODIS imageries, WetSpass Model successfully provides the interpretation of potential groundwater infiltration. For the research of slope disaster, the soil water content retrieved from ATI-MODIS was considered during typhoon event. It is indicated that the slope area may be triggered as a landslide with increased pore water pressure and reduced effective stress. The comprehensive analysis results provide important information on the disaster prevention and mitigation.
關鍵字(中) ★ 衛星遙測
★ GIS
★ 地下水
★ 坡地災害
關鍵字(英) ★ remote sensing
★ GIS
★ groundwater
★ slope disaster
論文目次 摘 要 I
Abstract III
致 謝 V
目錄 VII
圖目錄 XI
表目錄 XV
符號說明 XVII
簡稱說明 XVIII
一、緒 論 1
1-1 前言 1
1-2 研究議題與目的 5
1-2-1 遙測地下水特性評估與分析 5
1-2-2 衛星資料反演與坡地防災應用 5
1-3 研究創新與貢獻 7
二、文獻回顧 8
2-1 水文循環與地下水系統概述 8
2-2 水文地質單元與地下水水文圖 12
2-2-1 水文地質單元劃分參考因子 14
2-2-2 臺灣地區水文地質單元劃分文獻 16
2-3 遙測地下水特性與分析 19
2-3-1 水頭 19
2-3-2 熱容量 19
2-3-3 地質與線性構造 21
2-3-4 地下水與地面水交互作用 22
2-3-5 植生與地下水之關連性 25
2-3-6 遙測與GIS技術整合應用 25
2-3-7 地下水與坡地防災 28
2-4 國際間觀測水文的任務 30
2-4-1 歐洲SMOS衛星 30
2-4-2 美國SMAP衛星 30
2-4-3 美國與德國GRACE衛星 32
2-5 衛星影像評估 33
2-5-1 Landsat衛星 34
2-5-2 SPOT衛星 36
2-5-3 福衛二號 37
2-5-4 MODIS衛星 37
三、研究區域 40
3-1 研究區概述 40
3-1-1 臺灣山區 40
3-1-2 嘉義縣油車寮崩塌地 42
3-2 水文地質架構 43
3-2-1 山區岩屑層與裂隙岩盤 43
3-2-2 崩塌地崩積層 45
3-3 現地資料蒐集 48
3-3-1 山區鑽探場址與抽水試驗成果 49
3-3-2 嘉義縣油車寮崩塌地調查成果 49
四、研究方法 50
4-1 研究流程 50
4-1-1 遙測與GIS技術整合應用 50
4-1-2 ATI-MODIS土壤含水量反演 53
4-2 衛星影像資料處理與反演 54
4-2-1 假色態影像處理 54
4-2-2 遙測指標分析 59
4-3 GIS空間資料分析 69
4-3-1 水文地質單元劃分 69
4-3-2 地形坡度、坡向、匯流分析 73
4-3-3 水力梯度分析 73
4-3-4 地形濕度指標分析 74
4-3-5 水系分析與水系密度圖 74
4-3-6 地形地貌分類 77
4-3-7 因子配分與潛勢量化 79
4-3-8 疊加因子計算 82
五、研究成果與討論 83
5-1 山區地下水潛能場址評估 83
5-1-1 臺灣山區地下水蘊藏潛勢圖 83
5-1-2 地下水潛能場址驗證 83
5-1-3 區域供水潛勢評估 88
5-1-4 GIS模式權重敏感性分析 91
5-1-5 遙測地下水指標三維立體可視化與潛能場址 91
5-2 土壤含水量反演與坡地防災應用 95
5-2-1 崩塌地圈繪與ATI-MODIS土壤含水量反演 95
5-2-2 區域土壤濕度指標與變異點分析 101
5-2-3 潛在優勢水流評估 104
六、結論與建議 106
6-1 結論 106
6-1-1 高效益地下水探勘與評估成果 106
6-1-2 土壤含水量與坡地災害關連性 107
6-2 建議 108
參考文獻 109
附錄A、遙測應用於台中盆地下水入滲案例 125
附錄B、Curriculum Vitae 139
參考文獻 1. Acworth, I., 2019. Investigating Groundwater. CRC Press, Leiden, pp. 586.
2. Al-Bakri, J.T., Al-Jahmany, Y.Y., 2013. Application of GIS and Remote Sensing to Groundwater Exploration in Al-Wala Basin in Jordan. Journal of Water Resource and Protection 05(10), 962-971.
3. Ali, E.A., El-Khidir, S.O., Babikir, I.A.A., Abdelrahman, E.M., 2012. Landsat ETM+7 digital image processing techniques for lithological and structural lineament enhancement: case study around Abidiya Area, Sudan. The Open Remote Sensing Journal 5, 83-89.
4. Amer, R., Sultan, M., Ripperdan, R., Ghulam, A., Kusky T., 2013. An integrated approach for groundwater potential zoning in shallow fracture zone aquifers. International Journal of Remote Sensing 34(19), 6539-6561.
5. Anderson, M.P., and Woessner, W.W., 1992. Applied ground water modeling: simulation of flow and advective transport. Academic Press, San Diego, California, pp. 381.
6. Arabameri, A.; Rezaei, K.; Cerda, A.; Lombardo, L. and Rodrigo-Comino, J., 2019. GIS-based groundwater potential mapping in Shahroud plain, Iran. A comparison among statistical (bivariate and multivariate), data mining and MCDM approaches. Science of The Total Environment, 658, 160-177.
7. Arkoprovo, B., Adarsa, J. Animesh, M., 2013. Application of remote sensing, GIS and MIF technique for elucidation of groundwater potential zones from a part of Orissa coastal tract, Eastern India. Research Journal of Recent Sciences 2(11), 42-49.
8. Artis, D.A., and Carnahan, W.H., 1982. Survey of emissivity variability in thermographyof urban areas. Remote Sens. Environ. 12, 313–329.
9. Batelaan, O., De Smedt, F. and Triest, L., 2003. Regional groundwater discharge: Phreatophyte mapping, groundwater modeling and impact analysis of land-use change. Journal of Hydrology 275(1-2), 86-108.
10. Batelaan, O., de Smedt, F., de Becker, P., Huybrechts, W., 1998. Characterization of a regional ground water discharge area by combined analysis of hydrochemistry, remote sensing and groundwater modelling, in: Dillon P. and Simmer, I. (Eds.), Shallow Groundwater Systems. A.A. Balkema Publishers, Rotterdam, Netherlands, pp. 75-86.
11. Batu, V., 1998. Aquifer hydraulics: a comprehensive guide to hydrogeologic data analysis. John Wiley & Sons, New York.
12. Becker, M.W., 1895. Gold fields of the southern Appalachians, Annual Report of the United States Geological Survey, Part III. Mineral Resources of the United States, Metallic Products 16, 251-331.
13. Becker, M.W., 2006. Potential for satellite remote sensing of ground water. Groundwater 44(2), 306-318.
14. Becker, M.W., Georgian, T., Ambrose, H., Sinscalchi, J., Fredrick, K.C., 2004. Estimating ground-water discharge using stream temperature and velocity. Journal of Hydrology 296(1-4), 221-233.
15. Bobba, A., Bukata, R., Jerome J., 1992. Digitally processed satellite data as a tool in detecting potential groundwater flow systems. Journal of Hydrology 131(1-4), 25-62.
16. Bredehoeft, J.D., 2002. The water budget myth revisited: Why hydrogeologists model. Ground Water 40, 340–345.
17. Brown, E.T., 1981. Rock Characterization, Testing and Monitoring: ISRM Suggested Methods. Pergamon Press, Oxford.
18. Brunner, P., Hendricks-Franssen, H-J, Kgotlhang, L. and Kinzelbach, W., 2007. Remote sensing in groundwater modelling. Hydrogeology Journal, Vol. 15(1), pp. 5–18.
19. Burnett, D., 2011. Use of satellite remote sensing for groundwater mapping in Haiti. IEEE Earthzine.
20. Caris, J.P.T., and Van Asch, T.W.J., 1991. Geophysical, geotechnical and hydrological investigations of a small landslide in the French Alps. Engineering Geology 31(3), 249-276.
21. Cartwright, K, 1968. Temperature prospecting for shallow glacial and alluvial aquifers in Illinois. Illinois State Geological Survey Circular 433, Illinois State Geological Survey, Urbana, Illinois.
22. Cascini, L.; Calvello, M.; Grimaldi, G.M., 2010. Groundwater modeling for the analysis of active slow-moving landslides. J. Geotech. Geoenviron. Eng., 136, 1220–1230.
23. Chander, G., Markham, B.L., Helder, D.L., 2009. Summary of current radiometric cal-ibration coefficients for Landsat MSS, TM, ETM+ and EO-1 ALI sensors. RemoteSens. Environ. 113, 893–903.
24. Chandra, S., Rao, V.A., Krishnamurthy, N.S., Dutta, S., Ahmed, S., 2005. Integrated studies for characterization of lineaments used to locate groundwater potential zones in a hard rock region of Karnataka, India. Hydrogeology Journal 14(5), 767-776.
25. Chang, T.-Y., Wang, Y.-C., Feng, C.-C., Ziegler, A.D., Giambelluca, T.W., Liou, Y.-A., 2012. Estimation of root zone soil moisture using apparent thermal inertia with MODIS Imagery over a tropical catchment in Northern Thailand. IEEE Journal of Selected Topics in Applied Earth Observations and Remote Sensing 5(3), 752-761.
26. Chase, M.E, 1969. Airborne remote sensing for ground water studies in a prairie environment. Canadian Journal of Earth Sciences 6, 737-741.
27. Chatterjee, C., Kumar, R., Chakravorty, B., Lohani, A.K. and Kumar, S., 2005. Integrating Remote Sensing and GIS Techniques with Groundwater Flow Modeling for Assessment of Waterlogged Areas. Water Resources Management, 19(5): 539-554.
28. Chen, C.-W., Saito, H., Oguchi, T., 2017. Analyzing rainfall-induced mass movements in Taiwan using the soil water index. Landslides 14, 1031-1041.
29. Chou, P.-Y., Hsu, S.-M., Chen, P.-J., Lin, J.-J., Lo, H.-C., 2014a. Fractured-bedrock aquifer studies based on a descriptive statistics of well-logging data: A case study from the Dajia River basin, Taiwan. Acta Geophysica 62(3), 564-584.
30. Chou, P.-Y., Lin, J.-J., Hsu, S.-M., Lo, H.-C., Chen, P.-J., Ke, C.-C., Lee, W.-R., Huang, C.-C., Chen, N.-C., Wen, H.-Y., 2014b. Characterising the spatial distribution of transmissivity in the mountainous region: Results from watersheds in central Taiwan, in: Sharp, J. M. (Eds.), Fractured Rock Hydrogeology. CRC Press, pp.115-127.
31. Chowdhury, A., Jha, M.K., Chowdary, V.M., Mal, B.C., 2009. Integrated remote sensing and GIS‐based approach for assessing groundwater potential in West Medinipur district, West Bengal, India. International Journal of Remote Sensing 30(1), 231-250.
32. Conant, B, 2004. Delineating and quantifying ground water discharge zones using streambed temperatures. Ground Water 42(2), 243-257.
33. Constantz, J.E., 1998. Interaction between stream temperature, streamflow, and groundwater exchanges in alpine streams. Water Resources Research 34(7), 1609-1615.
34. Corominas, J., Moya, J., Ledesma, A., Lloret, A., Gili, J.A., 2005. Prediction of ground displacements and velocities from groundwater level changes at the Vallcebre landslide (Eastern Pyrenees, Spain). Landslides 2, 83–96.
35. Costelloe, J.F., Matic, V., Western, A.W., Walker, J.P., 2009. Framework for incorporating spectral observations into steady state analysis of groundwater discharge around the margins of the Great Artesian Basin. 18th World IMACS / MODSIM Congress, Cairns, Australia, 3690-3696.
36. Daniel, C.C., III, and Dahlen, P.R., 2002. Preliminary Hydrogeologic Assessment and Study Plan for a Regional Ground-Water Resource Investigation of the Blue Ridge and Piedmont Provinces of North Carolina. Water-Resources Investigations Report 02-4105, U.S. Geological Survey, Raleigh, North Carolina.
37. Danish Ministry of the Environment, 1999. Hydrogeological mapping for site-specifi c groundwater protection zones in Denmark, Danish Ministry of the Environment.
38. de Vries, J.J., 1995. Seasonal expansion and contraction of stream networks in shallow groundwater systems. Journal of Hydrology 170, 1-4, 15-26.
39. Department of Land Resources, Ministry of Rural Development, Government of India, 2008. Integrated Watershed Management Programme (IWMP).
40. Díaz-Alcaide, S. and Martínez-Santos, P., 2019. Review: Advances in groundwater potential mapping. Hydrogeology Journal, 27(7): 2307-2324.
41. Dinesh Kumar, P.K., Gopinath, G., Seralathan, P., 2007. Application of remote sensing and GIS for the demarcation of groundwater potential zones of a river basin in Kerala, southwest coast of India. International Journal of Remote Sensing 28(24), 5583-5601.
42. Engelen, G.B., Kloosterman, F.H., 1996. Hydrological system analysis: methods and application. In: Water Science and Technology Library, vol. 20. Kluwer Academic Publishers, p. 149.
43. Florida Geological Survey, 2009. Hydrogeologcial Units of Florida, U.S. Geological Survey.
44. Food and Agriculture Organization of the United Nations, 2003. Review of world water resources by country. Food and Agriculture Organization of the United Nations, Rome, Italy, pp. 110.
45. Fookes, P., 1997. Geology for engineers: the geological model, prediction and performance. Quarterly Journal of Engineering Geology and Hydrogeology 30(4), 293-424.
46. Galanos, I., and Rokos, D., 2006. A statistical approach in investigating the hydrogeological significance of remotely sensed lineaments in the crystalline mountainous terrain of the island of Naxos, Greece. Hydrogeology Journal 14(8), 1569-1581.
47. Gath, E., Gonzalez, T., Roe, J., Buchiarelli, P., Kenny, M., 2014. The West Beverly Hills lineament and Beverly Hills High School: Ethical issues in geo-hazard communication. EGU General Assembly 2014, vol. 16, Vienna, Austria.
48. Gattinoni, P., 2009. Parametrical landslide modeling for the hydrogeological susceptibility assessment: From the Crati Valley to the Cavallerizzo landslide (Southern Italy). Nat. Hazards 50, 161–178.
49. Geological Survey of Canada, 2007. Hydrogeologcial Unit, Geological Survey of Canada.
50. Gillies, R.R., Carlson, T.N., Cui, J., Kustas, W.P., Humes, K.S., 1997. A verification of the triangle method for obtaining surface soil water content and energy fluxes from remote measurements of the normalized difference vegetation index (NDVI) and surface radiant temperature. International Journal of Remote Sensing 18, 3145-3166.
51. González-Zamora, Á., Sánchez, N., Martínez-Fernández, J., Wagner, W., 2016. Root-zone plant available water estimation using the SMOS-derived soil water index. Advances in Water Resources 96, 339-353.
52. Government of India, 2009. Hydrogeologcial Unit, Central Ground Water Board, Ministry of Water Resources, India.
53. Hashim, M., Ahmad, S., Johari, M.A.M., Pour, A.B., 2013. Automatic lineament extraction in a heavily vegetated region using Landsat Enhanced Thematic Mapper (ETM+) imagery. Advances in Space Research 51(5), 874-890.
54. Heath, R.C., 1984. Ground-water regions of the United States. Water-Supply Paper 2242, U.S. Geological Survey, Washington, D.C.
55. Heilman, J., and Moore, D., 1982. Evaluating near-surface soil moisture using Heat Capacity Mapping Mission data. Remote Sensing of Environment 12(2), 117-121.
56. Henriksen, H. and Braathen, A., 2006. Effects of fracture lineaments and in-situ rock stresses on groundwater flow in hard rocks: a case study from Sunnfjord, western Norway. Hydrogeology Journal, 14(4): 444-461.
57. Henriksen, H., 1995. Relation between topography and well yield in boreholes in crystalline rocks, Sogn og Fjordane, Norway. Groundwater 33(4), 635-643.
58. Hobza, C.M. and Densmore, B.K., 2018. Aerial thermal infrared imagery, focused groundwater discharge points, water temperature, streambed temperature, and vertical hydraulic gradient data collected along the South Loup, Dismal, and North Loup Rivers, Nebraska, 2014-16: U.S. Geological Survey data release, https://doi.org/10.5066/F72Z14TP.
59. Hoffmann, J. and Sander, P., 2007. Remote sensing and GIS in hydrogeology. Hydrogeology Journal, 15(1): 1-3.
60. Hoffmann, J., 2005. The future of satellite remote sensing in hydrogeology. Hydrogeology Journal, 13(1), 247–50.
61. Hong, Y.M., and Wan, S., 2011. Forecasting groundwater level fluctuations for rainfall-induced landslide. Nat. Hazards 57, 167-184.
62. Hung, L., Batelaan, O., de Smedt, F., 2005. Lineament extraction and analysis, comparison of LANDSAT ETM and ASTER imagery. Case study: Suoimuoi tropical karst catchment, Vietnam, in: Ehlers, M., Miche, U. (Eds.), Remote sensing for environmental monitoring, GIS applications, and geology V. SPIE, Bellingham, USA, pp. 59830T1-T12.
63. Huntley, D, 1978. Detection of shallow aquifers using thermal infrared imagery, Water Resources Research 14(6), 1075-1083.
64. Institute of Geological Sciences, 1976. Hydrogeologieal Map of Northern East Anglia, British Geological Survey.
65. Istadi, B.P., Pramono, G.H., Sumintadireja, P., Alam, S., 2009. Modeling study of growth and potential geohazard for LUSI mud volcano: East Java, Indonesia. Marine and Petroleum Geology 26, 1724-1739.
66. Jenks, G.F., 1967. The data model concept in statistical mapping. Int. Yearb. Cartogr. 7, 186-190.
67. Jha, M.K. and Chowdary, V.M., 2007. Challenges of using remote sensing and GIS in developing nations. Hydrogeology Journal, Vol. 15 (1), pp 197–200.
68. Jha, M.K., Chowdhury, A., Chowdary, V.M., Peiffer, S., 2007. Groundwater management and development by integrated remote sensing and geographic information systems: prospects and constraints. Water Resources Management 21(2), 427-467.
69. Kansas Geological Survey, 1988. Dakota Aquifer Program, U.S. Geological Survey.
70. Klijn, F., and Witte, J.-P.M., 1999. Eco-hydrology: groundwater flow and site factors in plant ecology. Hydrogeology Journal 7(1), 65-77.
71. Lachassagne, P., 2008. Overview of the Hydrogeology of Hard Rock Aquifers: Applications for their Survey, Management, Modelling and Protection. Springer, Dordrecht.
72. Lachassagne, P., Wyns, R., Bérard, P., Bruel, T., Chéry, L., Coutand, T., Desprats, J.F., Le Strat, P., 2001. Exploitation of high‐yields in hard‐rock aquifers: downscaling methodology combining GIS and multicriteria analysis to delineate field prospecting zones. Groundwater 39(4), 568-581.
73. Law, M. and Collins, A., 2018. Getting to Know ArcGIS Desktop; ESRI Press: Redlands, CA, USA.
74. Levine, J.B., and Salvucci, G.D., 1999. Equilibrium analysis of groundwater–vadose zone interactions and the resulting spatial distribution of hydrologic fluxes across a Canadian prairie. Water Resources Research 35(5), 1369-1383.
75. Lin, J.-J., Liou, Y.-A., 2020. Integrating In-Situ Data and RS-GIS Techniques to Identify Groundwater Potential Sites in Mountainous Regions of Taiwan. Applied Sciences 10(12), 4119.
76. Lin, J.-J., Liou, Y.-A., Hsu, S.-M., 2016. Automatic Lineament Extraction from Landsat Imagery and its Application on Water Resources and Geo-hazard, International Conference on Earth Observations and Societal Impacts 2016 (ICEO&SI 2016), Keelung, Taiwan, June 26th - 28th.
77. Lin, J.-J., Liou, Y.-A., Hsu, S.-M., Chi, S.-Y., Nguyen, A.K., 2016. Characteristic of multispectral images and well yields of hydrogeological units in fracture bedrock, Taiwan. IEEE International Geoscience and Remote Sensing Symposium 2016 (IGARSS 2016), Beijing, China.
78. Lin, J.-J., Liou, Y.-A., Hsu, S.-M; Chin, S.-Y., 2016. Mapping of potential groundwater sites by remote sensing data, International Symposium on Remote Sensing 2016 (ISRS 2016), WR, April 20th - 22nd.
79. Lin, J.-J., Liou, Y.-A; Ke, C.C., 2018. Observed Abnormality of Soil Moisture Index at Youcheliao Landslide, Taiwan, JpGU Joint Meeting 2018, Chiba, Japan, May 20th - 24th.
80. Lin, J.-J., Liou, Y.-A; Ke, C.C.; Chen, N.C.; Chi, S.Y., 2017. MODIS-derived soil moisture and its correlation with landslide, ICEO&NH 2017, Hanoi, Vietnam, Nov. 21st - 23rd .
81. Lin, J.-J., Liou, Y.-A; Ke, C.C.; Chi, S.Y.; Chang, K.C., 2018. Comparison of soil moisture derived from Landsat and MODIS imagery at Qing-shui catchment, Taiwan, AGU Fall Meeting 2018, USA, Dec. 10th - 14th.
82. Lin, J.-J., Liou, Y.-A; Ke, C.C.; Chi, S.Y.; Liang, J.H.,2019. Groundwater potential analysis using the multiple spatiotemporal remote sensing approach in fractured rock of mountainous region, Japan Geoscience Union Meeting 2019 (JpGU 2019), Chiba, Japan, May 26th - 30th.
83. Lin, J.-J., Liou, Y.-A; Ke, C.C.; Lin, Y.T., 2017. Integrating remote sensing and in-situ data to delineate vulnerable groundwater recharge areas in urban cities of Taiwan, JpGU-AGU Joint Meeting 2017, Chiba, Japan, May 20th - 25th.
84. Lin, J.-J.; Hsu, S.M.; Chou, P.Y.; Chi, S.Y.; Hsu, S.Y., 2014. Application of Multi-temporal SPOT Imagery for Sediment Disaster Analysis: A Case Study, International Conference on Earth Observations and Societal Impacts 2014 (ICEO&SI 2014), Miaoli, Taiwan, June 22nd - 24th.
85. Lin, J.-J.; Ke, C.C.; Chou, P.Y.; Hsu, S.M.; Liou, Y.-A.; Lin, Y.T.; Huang, C.C., 2016. Preliminary identification and delineation of groundwater recharge zones in Taichung Basin, Taiwan Geosciences Assembly 2016, Taipei, Taiwan, May 16th - 20th , H1-3A-01.
86. Lin, J.-J.; Liou, Y.-A.; Hsu, S.M., 2015. Groundwater discharge and recharge estimate by remote sensing data, KAGIS Fall Conference & International Symposium on GIS 2015, Busan, South Korea, Nov. 5 th - 7th.
87. Lin, J.-J.; Liou, Y.-A.; Hsu, S.M.; Huang, C.C.; Chou, P.Y.; Chi, S.Y., 2015. Comparison of Remote Sensing Imagery and WetSpass Model to Identify Sensitive Groundwater Recharge Area: A Case Study in Taichung Basin, ICEO&SI 2015and ICLEI Resilience Forum, Kaohsiung, Taiwan, June 28nd - 30th.
88. Liou, Y.-A., Le, M.S., Chien, H., 2019. Normalized difference latent heat index for remote sensing of land surface energy fluxes. IEEE Transactions on Geoscience and Remote Sensing 57(3), 1423-1433.
89. Liou, Y.-A., Wu, A.-M., Lin, H.-Y., 2016. FORMOSAT-2 Quick Imaging, in: Qian, S.-E (Eds.), Optical Payloads for Space Missions, Wiley, Oxford, UK, pp. 1008.
90. Mallick, K., Bhattacharya, B.K., Patel, N.K., 2009. Estimating volumetric surface moisture content for cropped soils using a soil wetness index based on surface temperature and NDVI. Agricultural and Forest Meteorology 149(8), 1327-1342.
91. Martins-Campina, B., Huneau, F. and Fabre, R., 2008. The Eaux-Bonnes landslide (Western Pyrenees, France): overview of possible triggering factors with emphasis on the role of groundwater. Environmental Geology 55(2): 397-404.
92. Martins-Campina, B., Huneau, F., Fabre, R., 2008. The Eaux-Bonnes landslide (Western Pyrenees, France): overview of possible triggering factors with emphasis on the role of groundwater. Environmental Geology, 55(2): 397-404.
93. Matin, M.A. and Bourque C.P., 2013. Intra- and inter-annual variations in snow-water storage in data sparse desert-mountain regions assessed from remote sensing. Remote Sensing of Environment 139, 18-34.
94. Mazvimavi, D., Meijerink, A.M.J., Savenije, H.H.G., Stein, A., 2005. Prediction of flow characteristics using multiple regression and neural networks: A case study in Zimbabwe. Physics and Chemistry of the Earth Parts 30, 639-647.
95. McFeeters, S.K., 1996. The use of normalized difference water index (NDWI) in the delineation of open water features. International Journal of Remote Sensing 17, 1425–1432.
96. McSwain, K.B., Bolich, R.E. Chapman, M.J., Huffman, B.A., 2009. Water-Resources Data and Hydrogeologic Setting at the Raleigh Hydrogeologic Research Station, Wake County, North Carolina, 2005-2007. Open-File Report 2008-1377, U.S. Geological Survey, Reston, Virginia.
97. Meijerink, A.M.J., 1996. Remote sensing applications to hydrology: Groundwater. Hydrological Sciences Journal, Vol. 41 (4), pp. 549–61.
98. Meijerink, A.M.J., Bannert, D., Batelaan, O., Lubczynski, M.W., Pointet, T., 2007. Remote sensing applications to groundwater. United Nations Educational, Scientific and Cultural Organization (UNESCO), IHP-VI, Series of Groundwater No. 16, France.
99. Murthy, K.S.R., and Mamo, A.G., 2009. Multi‐criteria decision evaluation in groundwater zones identification in Moyale-Teltele subbasin, South Ethiopia. International Journal of Remote Sensing 30(11), 2729-2740.
100. NASA, 2014, SMAP Handbook, Jet Propulsion Laboratory, California Institute of Technology.
101. Natalya Hunter Williams, 2005. Groundwater Body Delineation in the Republic of Ireland, Geological Survey of Ireland.
102. Ngie, A., Ahmed, F., and Abutaleb, K., 2014. Remote sensing potential for investigation of maize production: review of literature. South African Journal of Geomatics. 311, 27-559..
103. Nguyen, A. K. and Liou, Y.-A., 2019b. Mapping global eco-environment vulnerability due to human and nature disturbances. MethodsX, 6, 862-875.
104. Nguyen, A.K., Liou, Y.-A., Terry, J.P., 2019a. Vulnerability and adaptive capacity maps of Vietnam in response to typhoons. Science of the Total Environment 682, 31-46.
105. Ni, B., Wang, D., Deng, Z., Xu, H., Wang, D., Jiang, X., 2018. Review on the Groundwater Potential Evaluation Based on Remote Sensing Technology. IOP Conference Series: Materials Science and Engineering, 394: 052038.
106. Nutter, L.J., and Otton, E.G., 1969. Ground-water occurrence in the Maryland Piedmont. Geological Survey Water-Supply Paper 2077, Washington, D.C.
107. Pablos, M., González-Zamora, Á., Sánchez, N., Martínez-Fernández, J., 2018. Assessment of root zone soil moisture estimations from SMAP, SMOS and MODIS observations. Remote Sens. 10, 981.
108. Panigrahi, B., Nayak, A.K. and Sharma, S.D., 1995. Application of remote sensing technology for groundwater potential evaluation. Water Resources Management, 9(3): 161-173.
109. Parizek, R.R., 1976. Application on fracture traces and lineaments to ground-water prospecting, in: Gold, D.P. and Parizek, R.R. (Eds.), Field Guide to Lineaments and Fractures in Central Pennsylvania, 2nd Intl. Conf. on the New Basement Tectonics, Univ. of Delaware, Newark, July 13-18, 1976, 38-49.
110. Parizek, R.R., 1983. Hydrologic significance of fracture traces and lineaments, Birdsall Distinguished Lecture, Geol. Soc. Of America Abstracts with Programs, 15(6).
111. Parizek, R.R., and Voight, B., 1968. Fracture-zone analysis in geotechnical exploration, Int’l. Geol. Congress, Academic Press, Prague, pp. 331.
112. Ranganai, R.T., and Ebinger, C.J., 2008. Aeromagnetic and Landsat TM structural interpretation for identifying regional groundwater exploration targets, South-central Zimbabwe Craton. J. Appl. Geophysics 65, 73-83.
113. Rodell, M., and Famiglietti, J.S., 2002, The potential for satellite based monitoring of groundwater storage changes using GRACE: The High Plains aquifer, Central US. Journal of Hydrology 263(1-4), 245-256.
114. Rosenberry, D.O., Striegl, R.G., Hudson, D.C., 2000. Plants as indicators of focused ground water discharge to a northern Minnesota lake. Ground Water 38(2), 296-303.
115. Saadi, N.M., Abdel Zaher, M., El-Baz, F., Watanabe, K., 2011. Integrated remote sensing data utilization for investigating structural and tectonic history of the Ghadames Basin, Libya. Inter. J. Appl. Earth Obser. Geoinfor 13, 778-791.
116. SADC, 2009. Hydrogeological Mapping Procedures and Guidelines, The Southern African Development Community.
117. Saito, H., Nakayama, D., Matsuyama, H., 2010. Two types of rainfall conditions associated with shallow landslide initiation in Japan as revealed by normalized soil water index. SOLA 6, 57-60.
118. Salvucci, G.D., and Entekhabi, D., 1995. Hillslope and climatic controls on hydrologic fluxes. Water Resources Research 31(7), 1725-1739.
119. Sander, P., 2007. Lineaments in groundwater exploration: a review of applications and limitations. Hydrogeology Journal, 15(1): 71-74.
120. Sandholt, I., Rasmussen, K., Andersen, J., 2002. A simple interpretation of the surface temperature/vegetation index space for assessment of surface moisture status. Remote Sensing of Environment 79, 213-224.
121. Scanlon, B.R., Longuevergne, L., Long, D., 2012. Ground referencing GRACE satellite estimates of groundwater storage changes in the California Central Valley, USA. Water Resources Research 48, W04520.
122. Shiklomanov, Igor, 1993. World fresh water resources, in: Gleick, P.H. (Eds.), Water in crisis: A Guide to the world′s fresh water resources. Oxford University Press, New York.
123. Shyu, J.B.H., Sieh, K., Chen, Y.G., Liu, C.S., 2005. Neotectonic architecture of Taiwan and its implications for future large earthquakes. Journal of Geophysical Research: Solid Earth 110 (B08402), 503-515.
124. Siegmund, A. and Menz, G., 2005. Fernes nah gebracht - Satelliten- und Luftbildeinsatz zur Analyse von Umweltveränderungen im Geographieunterricht, in: Geographie und Schule, 154: 7.
125. Silliman, S.E., and Booth, D.F., 1993. Analysis of time-series measurements of sediment temperature for identification of gaining vs. losing portions of Juday Creek, Indiana. Journal of Hydrology 146(1-4), 131-148.
126. Sitotaw, Y.-Z., 2010. Implications of GRACE satellite gravity measurements for diverse hydrological applications. University of Manitoba, Canada.
127. Soeters, R., and van Westen, C.J.,1996. Slope instability recognition, analysis, and zonation, in: Turner, A.K. and Schuster, R.L. (Eds.), Landslides: Investigation and Mitigation, Special Report No. 247, National Academy of Sciences, Washington, D.C., pp. 673.
128. Solley, W.B., Pierce, R.R. and Perlman, H.A., 1998. Estimated use of water in the United States in 1995. U.S. Geological Survey, Reston, Virginia.
129. Srivastava, P.K., Bhattacharya, A.K., 2006. Groundwater assessment through an integrated approach using remote sensing, GIS and resistivity techniques: a case study from a hard rock terrain. International Journal of Remote Sensing 27(20), 4599-4620.
130. Strahler, A.N., 1957. Quantitative analysis of watershed geomorphology. Transactions American Geophysical Union 38(6), 913-920.
131. Struckmeier, W.F., and Margat, J., 1995. Hydrogeological maps - A guide and a Standard legend: Hannover, Germany, International Contributions to Hydrogeology, IAH publication, v. 17, Verlag Heinz Heise.
132. Sun, G.; Zheng, H.; Tang, H.; Dai, F., 2016. Huangtupo landslide stability under water level fluctuations of the Three Gorges reservoir. Landslides 13, 1167–1179.
133. Taylor, O.J., Hood, J.W., and Zimmerman, E.A., 1983. Plan of study for the regional aquifer systems analysis of the Upper Colorado River Basin in Colorado, Utah, Wyoming, and Arizona: U.S. Geological Survey Water-Resources Investigations Report 83-4184, pp.23.
134. Taylor, G., and Eggleton, R.A., 2001. Regolith geology and geomorphology. John Wiley & Sons, New York.
135. Teng, L.S., 1990. Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tecionophysics 183, 57-76.
136. Thillaigovindarajan, S., Kumar, S.S., Jayaraman, M., Radhakrishnamoorthy, P., 1985. The evaluation of hydrogeological conditions in the southern part of Tamil Nadu using remote-sensing techniques. International Journal of Remote Sensing 6(3-4), 447-456.
137. Toby, C., 2007. An overview of the triangle method for estimating surface evapotranspiration and soil moisture from satellite imagery. Sensors 7, 1612-1629.
138. Tóth, J., 1963. A theoretical analysis of groundwater flow in small drainage basins. Journal of Geopsysical research 68(16), 4795-4812.
139. U.S. Environmental Protection Agency, 2003. Multimedia, multipathway, and multireceptor risk assessment (3MRA) modeling system, U.S. EPA, Washington D.C.
140. U.S. Geological Survey, 2003. National Atlas of the United States, U.S. Geological Survey.
141. U.S. Geological Survey, 2008. Hydrogeologic Setting, Ground-Water Flow, and Ground-Water Quality at the Langtree Peninsula Research Station, Iredell County, North Carolina, U.S. Geological Survey.
142. UNESCO, 1983. International Legend for Hydrogeological Maps, United Nations Educational, Scientific and Cultural Organization.
143. UNESCO, IASH, IAH, IGS, 1970. International legend for hydrogeological maps. Cook, Hammond & Kell Ltd., England.
144. Varnes, D.J., 1978. Slope Movement Types and Processes, in: Schuster, R.L. and Krizek, R.J. (Eds.), Landslides: Analysis and Control, Special Report No. 176, National Academy of Sciences, Washington, D.C., pp. 234.
145. Verstraeten, W.W., Frank Veroustraete, F., van der Sande, C.J., Grootaers, I., Feyen, J., 2006. Soil moisture retrieval using thermal inertia, determined with visible and thermal spaceborne data, validated for European forests. Remote Sensing of Environment 101, 299-314.
146. Waters, P., Greenbaum, D., Smart, P.L., Osmaston, H., 1990. Applications of remote sensing to groundwater hydrogeology. Remote Sensing Reviews 4(2), 223-264.
147. Williams, L.J., Kath, R.L., Crawford, T.J., Chapman, M.J., 2005. Influence of geologic setting on ground-water availability in the Lawrenceville area, Gwinnett County, Georgia. Scientific Investigations Report 2005-5136, U.S. Geological Survey, Reston, Virginia.
148. Winkler, G., Reichl, P., Strobl, E., 2003. Hydrogeological conceptual model - fracture network analyses to determine hydrogeological homogeneous units in hard rocks. Materials and Geoenvironment 50(1), 417-420.
149. Wolock, D., 2003. Flow characteristics at U.S. Geological Survey streamgages in the conterminous United States. USGS Open-File Report 03-146, U.S. Geological Survey, Reston, Virginia.
150. Wolski, P, 1999. Application of reservoir modelling to hydrotopes indentified by remote sensing. Vrije Universiteit, Amesterdam, pp. 195.
151. World Water Assessment Programme, 2009. The United Nations World Water Development Report 3: Water in a Changing World. UNESCO, Paris, and Earthscan, London.
152. Wörman, A., Packman, A.I., Marklund, L., Harvey, J.W., Stone, S.H., 2006. Exact three-dimensional spectral solution to surface-groundwater interactions with arbitrary surface topography. Geophysical Research Letters 33(7), L07402.
153. Yang, Y., Guan, H., Long, D., Liu, B., Qin, G., Qin, J., Batelaan, O., 2015. Estimation of surface soil moisture from thermal infrared remote sensing using an improved trapezoid method. Remote sensing 7(7), 8250-8270.
154. Younis, S.M.Z. and Iqbal, J., 2015. Estimation of soil moisture using multispectral and FTIR techniques. The Egyptian Journal of Remote Sensing and Space Science 18(2), 151-161.
155. Zhang, D., Tang, R., Zhao, W., Tang, B., Wu, H., Shao, K., Li, Z.-L., 2014. Surface soil water content estimation from thermal remote sensing based on the temporal variation of land surface temperature. Remote Sensing 6(4), 3170-3187.
156. Zhou, Y. and Li, W., 2011. A review of regional groundwater flow modeling. Geoscience Frontiers, 2(2), 205-214.
157. 中國四川省地質礦物局,2006,四川省红層丘陵區地下水遙感综合調查圖冊,中國四川省地質礦物局。
158. 王文能,2016,崩塌的地質特性與防災,中華防災學會出版委員會。
159. 行政院農委會水土保持局,1992,崩塌地調查、規劃與設計手冊(地滑篇),行政院農委會水土保持局,共214頁。
160. 行政院農委會水土保持局,2016,油車寮及公田部落崩塌地監測系統及優勢水流路徑模式建置計畫,行政院農委會水土保持局。
161. 行政院農委會水土保持局,2017,水土保持手冊,行政院農委會水土保持局。
162. 行政院農委會水土保持局,2017,油車寮及公田部落崩塌地監測系統及優勢水流路徑模式建置計畫(第2年),行政院農委會水土保持局。
163. 何春蓀,1955,臺灣之地下水地質,臺灣銀行季刊,第7卷,第二期,第112-128頁。
164. 吳銘志,2006,臺灣地區地下水文圖圖集繪製工作(4/4)期末報告,經濟部水利署。
165. 林榮潤、李鳳梅、柯建仲、林燕初、王詠絢、黃智昭,2017,應用遙測技術於山區水資源蘊藏(開發)潛勢評估:以臺灣中段與南段山區為例,2017山區水文地質與地下水資源調查成果發表會,經濟部中央地質調查所,台北。
166. 林榮潤、周柏儀、柯建仲、劉說安、陸挽中、林燕初、賴慈華,2017,嘉南平原地下水補注區特性與劃分之初步研究,中華民國地質學會與中華民國地球物理學會106年年會暨學術研討會,O-2H1-4,台南。
167. 林榮潤、許世孟、李鳳梅,2015,遙測技術應用於山區地下水潛能場址之研究,中興工程季刊,第127期,第11-19頁。
168. 林榮潤、許世孟、劉說安、林燕初、黃智昭,2016,應用高精度多光譜衛星影像判釋地下水特徵與影像量化之研究,第九屆地下水資源及水質保護研討會暨2016海峽兩岸地下水與水文地質應用研討會,D4,第158頁,新竹。
169. 黃進達,2008,台中地區第四紀沉積環境研究與大地構造意義,國立臺灣師範大學,共123頁。
170. 楊萬全,1987,臺灣地區的地下水域劃分,地理學研究,第11期,第41-68頁。
171. 經濟部水資源規劃委員會,1986,臺灣地下水文地質圖。經濟部水資源規劃委員會。
172. 經濟部水資源局,1999,臺灣地區地下水觀測網整體計畫第一期(81~87年度)成果彙編,經濟部水資源局。
173. 經濟部水利署,2002,地下水觀測網及地層下陷防治綜合執行計畫(六),經濟部水利署。
174. 經濟部水利署,2006,臺灣地區地下水文圖圖集繪製工作(4/4),經濟部水利署。
175. 經濟部中央地質調查所,2007,臺灣山區地下水資源調查研究先期計畫—山區水文地質及地下水資源調查研究(1/2),財團法人成大研究發展基金會。
176. 經濟部中央地質調查所,2008,工程地質探勘資料庫資料作業規範(修訂版),經濟部中央地質調查所。
177. 經濟部中央地質調查所,2008,臺灣山區地下水資源調查研究先期計畫-山區水文地質及地下水資源調查研究(2/2),財團法人成大研究發展基金會。
178. 經濟部中央地質調查所,2010,臺灣山區地下水資源調查研究整體計畫—臺灣中段山區地下岩層水力特性調查與地下水位觀測井建置(1/4),財團法人中興工程顧問社。
179. 經濟部中央地質調查所,2011,臺灣山區地下水資源調查研究整體計畫—臺灣中段山區地下岩層水力特性調查與地下水位觀測井建置(2/4),財團法人中興工程顧問社。
180. 經濟部中央地質調查所,2012,臺灣山區地下水資源調查研究整體計畫—臺灣中段山區地下岩層水力特性調查與地下水位觀測井建置(3/4),財團法人中興工程顧問社。
181. 經濟部中央地質調查所,2013,臺灣山區地下水資源調查研究整體計畫—臺灣中段山區地下岩層水力特性調查與地下水位觀測井建置(4/4),財團法人中興工程顧問社。
182. 經濟部中央地質調查所,2013,地下水水文地質與補注模式研究-102年度地下水主要補注區補充地質調查案(蘭陽平原),財團法人中興工程顧問社。
183. 經濟部中央地質調查所,2014,臺灣南段山區地下水資源調查計畫—臺灣南段山區地下水位觀測與水力特性調查(1/4),財團法人中興工程顧問社。
184. 經濟部中央地質調查所,2014,地下水水文地質與補注模式研究-補注區劃設與資源量評估(2/4),國立交通大學。
185. 經濟部中央地質調查所,2015,地下水水文地質與補注模式研究-104年度地下水主要補注區補充地質調查案(台中盆地),財團法人中興工程顧問社。
186. 經濟部中央地質調查所,2015,臺灣南段山區地下水資源調查計畫—臺灣南段山區地下水位觀測與水力特性調查(2/4),財團法人中興工程顧問社。
187. 經濟部中央地質調查所,2016,臺灣南段山區地下水資源調查計畫—臺灣南段山區地下水位觀測與水力特性調查(3/4),財團法人中興工程顧問社。
188. 經濟部中央地質調查所,2017,臺灣南段山區地下水資源調查計畫—臺灣南段山區地下水位觀測與水力特性調查(4/4),財團法人中興工程顧問社。
189. 經濟部中央地質調查所,2017,臺灣南段山區流域水文地質調查及圖幅繪編(4/4),工業技術研究院綠能與環境研究所。
指導教授 劉說安(Yuei-An Liou) 審核日期 2020-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明