博碩士論文 100284004 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:53 、訪客IP:18.222.69.152
姓名 方振丞(Jhen-Cheng Fang)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 水稻OsCAF1B 基因的功能性分析
(Functional analysis of OsCAF1B gene in rice)
相關論文
★ 水稻CAF1基因之功能分析-水稻CAF1基因的選殖、定性及表現★ 水稻OsDEADl-1基因的功能性探討
★ 利用水稻細胞之懸浮培養建立蛋白質高效率分泌系統★ 水稻CCR4基因之功能分析- 水稻CCR4基因的選殖、定性及表現
★ 阿拉伯芥 AtMYBS 基因功能性探討★ 水稻OsMYBS2基因的功能性分析
★ 水稻CCR4基因的功能分析- 繁衍大量表現和靜默表現的基因轉殖水稻★ 水稻OsVALs基因的功能性分析- 水稻OsVALs基因的選殖、定性及表現
★ 分析水稻T-DNA插入突變株: M0022150, M0023563, M0023580, M0037352及M0032079★ 以水稻懸浮培養細胞蛋白質生產系統生產mGMCSF
★ 建立表現耐熱澱粉普魯南糖酶基因之轉植甘藷★ 阿拉伯芥AtMYBSs基因參與在糖訊息及離層酸訊息傳遞之研究
★ I. II.★ 探討αAmy3、OsCIN1與Os33KD信號肽在水稻懸浮培養細胞中的功能及特性
★ 水稻CAF1基因在水稻懸浮培養細胞之研究★ 探討阿拉伯芥兩個MYB-related轉錄因子在糖訊息傳遞中所扮演的角色
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) Poly(A) tail的縮短也被稱為deadenylation,在真核生物中被認為是mRNA降解的速率決定步驟。CCR4-associated factor 1s (CAF1s) 在酵母菌與哺乳類動物中,則被認為是降解mRNA最為重要的酵素之一,然而在植物中關於CAF1的研究則是少之又少,因此我們針對水稻的OsCAF1s去做研究,我們發現水稻的OsCAF1B對於αAmy3 mRNA 的降解與deadenylation的過程,扮演了一個相當重要的角色。OsCAF1B基因會受到糖的誘導,因此我們利用大量表現OsCAF1B與失去deadenylase活性的OsCAF1B突變株,來探討其與受糖抑制基因αAmy3之間的關係,結果發現,大量表現OsCAF1B會加速αAmy3 mRNA的降解,而在大量表現失去deadenylase活性的OsCAF1B突變株中則會延緩其降解,並且在αAmy3 mRNA poly(A)長度也各別呈現相反的影響。此外,OsCAF1B也參與在水稻植株抵抗低溫逆境當中,在持續性大量表現OsCAF1B轉殖小苗,我們發現其呈現抗低溫的外表型,並且發現OsCAF1B deadenylase的功能對於水稻低溫耐受性是必要的,其改變了後期低溫反應轉錄活化因子的基因表現。總結以上發現,我們證實水稻OsCAF1B除了參與αAmy3 poly(A) tail deadenylation之外,還提供水稻抵抗低溫的能力。
摘要(英) Poly(A) tail shortening, also termed deadenylation, is the rate-limiting step of mRNA degradation in eukaryotic cells. The CCR4-associated factor 1s (CAF1s) was shown to be one of the major enzymes for catalyzing mRNA deadenylation in yeast and mammalian cells. However, the functions of CAF1 proteins in plants are poorly understood. Herein, we find that OsCAF1B plays a vital role in sugar-induced αAmy3 mRNA degradation and deadenylation. OsCAF1B expression was induced by sugar. Using gain of function and dominant negative mutation analysis, it was determined that sugar-induced αAmy3 mRNA degradation was accelerated in transgenic rice cell lines overexpressing OsCAF1B, whereas it was delayed in dominant negative mutation lines. Moreover, OsCAF1B overexpression and dominant negative mutation lines exhibited αAmy3 mRNA poly(A) tail shortening and extension, respectively. OsCAF1B also functioned in rice seedlings tolerance to cold stress. In transgenic rice seedlings, constitutive overexpression of OsCAF1B presented an enhanced cold tolerance phenotype. OsCAF1B deadenylase is essential for cold tolerance in rice. The enhancement of cold tolerance in transgenic rice was shown to be associated with the altered expression of late cold response transcription factors. These findings indicate that OsCAF1B participates in poly(A) tail deadenylation and acts in adaptation to cold stress in rice.
關鍵字(中) ★ 水稻
★ 低溫逆境
★ 糖訊號
★ 澱粉水解酵素
★ RNA降解機制
★ poly(A) tail 降解
關鍵字(英) ★ CAF1
★ poly(A) tail deadenylation
★ cold stress
★ αAmy3
★ mRNA degradation
★ Rice
★ sugar signaling
論文目次 摘要 VI
Abstract VII
Table of contents IX
List of Figures X
List of Tables XII
List of Supplementary data XIII
Introduction 1
Materials and Methods 8
Chapter 1: 15
A CCR4 association factor 1, OsCAF1B, participates in the αAmy3 mRNA poly(A) tail shortening and plays a role in germination and seedling growth 15
1-1: Results 16
1-2: Discussion 21
Chapter 2: 25
A CCR4-associated factor 1, OsCAF1B, confers tolerance of low-temperature stress in rice seedlings 25
2-1: Results 26
2-2: Discussion 32
References 38
Supplementary data 66
參考文獻 Arae, T., Morita, K., Imahori, R., Suzuki., Y, Yasuda., S, Sato., T, Yamaguchi, J.,
Chiba, Y. (2019) Identification of Arabidopsis CCR4-NOT complexes with pumilio RNA-binding proteins, APUM5 and APUM2. Plant Cell Physiol. 60, 2015-2025.
Aslam, A., Mittal, S., Koch, F., Andrau, J. C., and Winkler, G. S. (2009) The Ccr4-NOT deadenylase subunits CNOT7 and CNOT8 have overlapping roles and modulate cell proliferation. Mol. Biol. Cell 20, 3840-3850.
Belostotsky, D. A. , and Sieburth, L. E. (2009) Kill the messenger: mRNA decay and plant development. Curr. Opin. Plant Biol. 12, 96-102.
Bologna, N.G., and Voinnet, O. (2014). The diversity, biogenesis, and activities of endogenous silencing small RNAs in Arabidopsis. Annu Rev Plant Biol 65, 473-503.
Chakraborty, A., and Bhattacharjee, S. (2015). Differential competence of redox-regulatory mechanism under extremes of temperature determines growth performances and cross tolerance in two indica rice cultivars. J Plant Physiol 176, 65-77.
Chan, M. T., and Yu, S. M. (1998a) The 3′ untranslated region of a rice alpha-amylase gene functions as a sugar-dependent mRNA stability determinant. Proc. Natl. Acad. Sci. U.S.A. 95, 6543-6547.
Chan, M. T., and Yu, S. M. (1998b) The 3′ untranslated region of a rice alpha-amylase gene mediates sugar-dependent abundance of mRNA. Plant J. 15, 685-695.
Chang, H., Lim, J., Ha, M., and Kim, V. N. (2014) TAIL-seq: genome-wide determination of poly(A) tail length and 3′ end modifications. Mol. Cell 53, 1044-1052.
Chen, P. W., Lu, C. A., Yu, T. S., Tseng, T. H., Wang, C. S., and Yu, S. M. (2002) Rice alpha-amylase transcriptional enhancers direct multiple mode regulation of promoters in transgenic rice. J. Biol. Chem. 277, 13641-13649.
Chiba, Y., Johnson, M.A., Lidder, P., Vogel, J.T., van Erp, H., and Green, P.J. (2004). AtPARN is an essential poly(A) ribonuclease in Arabidopsis. Gene 328, 95-102.
Chiba, Y., and Green, P. J. (2009) mRNA degradation machinery in plants. J. Plant Biol. 52, 114-124.
Chou, W. L., Chung, Y. L., Fang, J. C., and Lu, C. A. (2017) Novel interaction between CCR4 and CAF1 in rice CCR4-NOT deadenylase complex. Plant Mol. Biol. 93, 79-96.
Chou, W. L., Huang, L. F., Fang, J. C., Yeh, C. H., Hong, C. Y., Wu, S. J., et al. (2014) Divergence of the expression and subcellular localization of CCR4-associated factor 1 (CAF1) deadenylase proteins in Oryza sativa. Plant Mol. Biol. 85, 443-458.
Collart, M. A., and Panasenko, O. O. (2012) The Ccr4--not complex. Gene 492, 42-53.
Dai, X., Xu, Y., Ma, Q., Xu, W., Wang, T., Xue, Y., and Chong, K. (2007). Overexpression of an R1R2R3 MYB gene, OsMYB3R-2, increases tolerance to freezing, drought, and salt stress in transgenic Arabidopsis. Plant Physiol 143, 1739-1751.
Darnell, J. E., Philipson, L., Wall, R., and Adesnik, M. (1971) Polyadenylic acid sequences: role in conversion of nuclear RNA into messenger RNA. Science 174, 507-510.
de Freitas, G.M., Thomas, J., Liyanage, R., Lay, J.O., Basu, S., Ramegowda., V., do Amaral, M.N., Benitez, L.C., Bolacel Braga, E.J., Pereira, A. (2019). Cold tolerance response mechanisms revealed through comparative analysis of gene and protein expression in multiple rice genotypes. PLoS ONE 14: e0218019.
Deng, C., Ye, H., Fan, M., Pu, T., and Yan, J. (2017). The rice transcription factors OsICE confer enhanced cold tolerance in transgenic Arabidopsis. Plant Signal Behav 12, e1316442.
Ding, Y., Shi, Y., and Yang, S. (2019). Advances and challenges in uncovering cold tolerance regulatory mechanisms in plants. New Phytol 222, 1690-1704.
Dykxhoorn, D. M., Novina, C. D., and Sharp, P. A. (2003) Killing the messenger: Short RNAs that silence gene expression. Nat. Rev. Mol. Cell Biol. 4, 457-467.
Fabian, M.R., Frank, F., Rouya, C., Siddiqui, N., Lai, W.S., Karetnikov, A., Blackshear, P.J., Nagar, B., and Sonenberg, N. (2013). Structural basis for the recruitment of the human CCR4-NOT deadenylase complex by tristetraprolin. Nat Struct Mol Biol 20, 735-739.
Fang, J.C., Liu, H.Y., Tsai, Y.C., Chou, W.L., Chang, C.C., and Lu, C.A. (2019). A CCR4 association factor 1, OsCAF1B, participates in the alphaAmy3 mRNA poly(A) tail shortening and plays a role in germination and seedling growth. Plant Cell Physiol 61, 554–564.
Ge, L.F., Chao, D.Y., Shi, M., Zhu, M.Z., Gao, J.P., and Lin, H.X. (2008). Overexpression of the trehalose-6-phosphate phosphatase gene OsTPP1 confers stress tolerance in rice and results in the activation of stress responsive genes. Planta 228, 191-201.
Gilmour, S.J., Zarka, D.G., Stockinger, E.J., Salazar, M.P., Houghton, J.M., and Thomashow, M.F. (1998). Low temperature regulation of the Arabidopsis CBF family of AP2 transcriptional activators as an early step in cold-induced COR gene expression. Plant J 16, 433-442.
Gross, B.L., and Zhao, Z. (2014). Archaeological and genetic insights into the origins of domesticated rice. Proc Natl Acad Sci U S A 111, 6190-6197.
Han, G., Wang, M., Yuan, F., Sui, N., Song, J., and Wang, B. (2014). The CCCH zinc finger protein gene AtZFP1 improves salt resistance in Arabidopsis thaliana. Plant Mol Biol 86, 237-253.
Hashimoto, M., and Komatsu, S. (2007). Proteomic analysis of rice seedlings during cold stress. Proteomics 7, 1293-1302.
Hussain, S., Khan, F., Hussain, H.A., and Nie, L. (2016). Physiological and Biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Front Plant Sci 7, 116.
Ho, S. L., Chao, Y. C., Tong, W. F., Yu, S. M. (2001) Sugar coordinately and differentially regulates growth- and stress-related gene expression via a complex signal transduction network and multiple control mechanisms. Plant Physiol. 125(2):877-90.
Ho, S. L., Huang, L. F., Lu, C. A., He, S. L., Wang, C. C., Yu, S. P., et al. (2013) Sugar starvation- and GA-inducible calcium-dependent protein kinase 1 feedback regulates GA biosynthesis and activates a 14-3-3 protein to confer drought tolerance in rice seedlings. Plant Mol. Biol. 81, 347-361.
Hussain, S., Khan, F., Hussain, H.A., and Nie, L. (2016). Physiological and Biochemical mechanisms of seed priming-induced chilling tolerance in rice cultivars. Front Plant Sci 7, 116.
Ito, Y., Katsura, K., Maruyama, K., Taji, T., Kobayashi, M., Seki, M., Shinozaki, K., and Yamaguchi-Shinozaki, K. (2006). Functional analysis of rice DREB1/CBF-type transcription factors involved in cold-responsive gene expression in transgenic rice. Plant Cell Physiol 47, 141-153.
Jaglo-Ottosen, K.R., Gilmour, S.J., Zarka, D.G., Schabenberger, O., and Thomashow, M.F. (1998). Arabidopsis CBF1 overexpression induces COR genes and enhances freezing tolerance. Science 280, 104-106.
Jambunathan, N. (2010). Determination and detection of reactive oxygen species (ROS), lipid peroxidation, and electrolyte leakage in plants. Methods Mol Biol 639, 292-298.
Jayne, S., Zwartjes, C. G., van Schaik, F. M., and Timmers, H. T. (2006) Involvement of the SMRT/NCoR-HDAC3 complex in transcriptional repression by the CNOT2 subunit of the human Ccr4-Not complex. Biochem. J. 398, 461-467.
Jiao, C., and Duan, Y. (2019). The role of IP3 in NO-enhanced chilling tolerance in Peach Fruit. J Agric Food Chem 67, 8312-8318.
Karrer, E. E., Litts, J. C., and Rodriguez, R. L. (1991) Differential expression of α-amylase genes in germinating rice and barley seeds. Plant Mol. Biol. 16, 797-805.
Koch, K. (2004) Sucrose metabolism: regulatory mechanisms and pivotal roles in sugar sensing and plant development. Curr. Opin. Plant Biol. 7, 235-246.
Koch, K. E. (1996) Carbohydrate-modulated gene expression in plants. Annu. Rev. Plant Physiol. Plant Mol. Biol. 47, 509-540.
Kojima, S., Gendreau, K. L., Sher-Chen, E. L., Gao, P., and Green, C. B. (2015) Changes in poly(A) tail length dynamics from the loss of the circadian deadenylase Nocturnin. Sci. Rep. 5, 17059.
Kojima, S., and Green, C. B. (2015) Analysis of circadian regulation of poly(A)-tail length. Methods Enzymol. 551, 387-403.
Korner, C.G., Wormington, M., Muckenthaler, M., Schneider, S., Dehlin, E., and Wahle, E. (1998). The deadenylating nuclease (DAN) is involved in poly(A) tail removal during the meiotic maturation of Xenopus oocytes. The EMBO journal 17, 5427-5437.
Kuhn, U., and Wahle, E. (2004) Structure and function of poly(A) binding proteins. Biochim. Biophys. Acta 1678, 67-84.
Lee, B.H., Henderson, D.A., and Zhu, J.K. (2005). The Arabidopsis cold-responsive transcriptome and its regulation by ICE1. Plant Cell 17, 3155-3175.
Lee, E.K., Kwon, M., Ko, J.H., Yi, H., Hwang, M.G., Chang, S., and Cho, M.H. (2004). Binding of sulfonylurea by AtMRP5, an Arabidopsis multidrug resistance-related protein that functions in salt tolerance. Plant Physiol 134, 528-538.
Lee, J. E., Lee, J. Y., Trembly, J., Wilusz, J., Tian, B., and Wilusz, C. J. (2012) The PARN deadenylase targets a discrete set of mRNAs for decay and regulates cell motility in mouse myoblasts. PLoS Genet. 8, e1002901.
Lee, S.C., Huh, K.W., An, K., An, G., and Kim, S.R. (2004). Ectopic expression of a cold-inducible transcription factor, CBF1/DREB1b, in transgenic rice (Oryza sativa L.). Mol Cells 18, 107-114.
Liang, W., Li, C., Liu, F., Jiang, H., Li, S., Sun, J. et al. (2009) The Arabidopsis homologs of CCR4-associated factor 1 show mRNA deadenylation activity and play a role in plant defence responses. Cell Res. 19, :307-316.
Lin, Q., Yang, J., Wang, Q., Zhu, H., Chen, Z., Dao, Y., and Wang, K. (2019). Overexpression of the trehalose-6-phosphate phosphatase family gene AtTPPF improves the drought tolerance of Arabidopsis thaliana. BMC Plant Biol 19, 381.
Liu, C., Wu, Y., and Wang, X. (2012). bZIP transcription factor OsbZIP52/RISBZ5: a potential negative regulator of cold and drought stress response in rice. Planta 235, 1157-1169.
Liu, C., Ou, S., Mao, B., Tang, J., Wang, W., Wang, H., Cao, S., Schlappi, M.R., Zhao, B., Xiao, G., Wang, X., and Chu, C. (2018). Early selection of bZIP73 facilitated adaptation of japonica rice to cold climates. Nat Commun 9, 3302.
Liu, Q., Kasuga, M., Sakuma, Y., Abe, H., Miura, S., Yamaguchi-Shinozaki, K., and Shinozaki, K. (1998). Two transcription factors, DREB1 and DREB2, with an EREBP/AP2 DNA binding domain separate two cellular signal transduction pathways in drought- and low-temperature-responsive gene expression, respectively, in Arabidopsis. Plant Cell 10, 1391-1406.
Liu, Y. K., Huang, L. F., Ho, S. L., Liao, C. Y., Liu, H. Y., Lai, Y. H.,et al. (2012) Production of mouse granulocyte-macrophage colony-stimulating factor by gateway technology and transgenic rice cell culture. Biotechnol. Bioeng. 109, 1239-1247.
Loreto, F., and Velikova, V. (2001). Isoprene produced by leaves protects the photosynthetic apparatus against ozone damage, quenches ozone products, and reduces lipid peroxidation of cellular membranes. Plant Physiol 127, 1781-1787.
Lu, C. A., Ho, T. H., Ho, S. L., and Yu, S. M. (2002) Three novel MYB proteins with one DNA binding repeat mediate sugar and hormone regulation of alpha-amylase gene expression. Plant Cell 14, 1963-1980.
Lu, C. A. Lim, E. K., and Yu, S. M. (1998) Sugar response sequence in the promoter of a rice alpha-amylase gene serves as a transcriptional enhancer. J. Biol. Chem. 273, 10120-10131.
Lu, C.A., Huang, C.K., Huang, W.S., Huang, T.S., Liu, H.Y., and Chen, Y.F. (2020). DEAD-box RNA helicase 42 plays a critical role in pre-mRNA splicing under cold Stress. Plant Physiol 182, 255-271.
Mader, S., Lee, H., Pause, A., and Sonenberg, N. (1995) The translation initiation factor eIF-4E binds to a common motif shared by the translation factor eIF-4 gamma and the translational repressors 4E-binding proteins. Mol. Cell Biol. 15, 4990-4997.
Maquat, L. E., and Carmichael, G. G. (2001) Quality control of mRNA function. Cell 104, 173-176.
Medina, J., Bargues, M., Terol, J., Perez-Alonso, M., and Salinas, J. (1999). The Arabidopsis CBF gene family is composed of three genes encoding AP2 domain-containing proteins whose expression Is regulated by low temperature but not by abscisic acid or dehydration. Plant Physiol 119, 463-470.
Meyer, S., Temme, C., and Wahle, E. (2004) Messenger RNA turnover in eukaryotes: pathways and enzymes. Crit. Rev. Biochem. Mol. Biol. 39, 197-216.
Miller, J.E., and Reese, J.C. (2012). Ccr4-Not complex: the control freak of eukaryotic cells. Crit Rev Biochem Mol Biol 47, 315-333.
Mittal, S., Aslam, A., Doidge, R., Medica, R., and Winkler, G. S. (2011) The Ccr4a (CNOT6) and Ccr4b (CNOT6L) deadenylase subunits of the human Ccr4-Not complex contribute to the prevention of cell death and senescence. Mol. Biol. Cell 22, 748-758.
Morino, S., Imataka, H., Svitkin, Y. V., Pestova, T. V., and Sonenberg, N. (2000) Eukaryotic translation initiation factor 4E (eIF4E) binding site and the middle one-third of eIF4GI constitute the core domain for cap-dependent translation, and the C-terminal one-third functions as a modulatory region. Mol. Cell Biol. 20, 468-477.
Morita, M., Suzuki, T., Nakamura, T., Yokoyama, K., Miyasaka, T., and Yamamoto, T. (2007) Depletion of mammalian CCR4b deadenylase triggers elevation of the p27Kip1 mRNA level and impairs cell growth. Mol. Cell Biol. 27, 4980-4990.
Mulder, K. W., Brenkman, A. B., Inagaki, A., van den Broek, N. J., and Timmers, H. T. (2007) Regulation of histone H3K4 tri-methylation and PAF complex recruitment by the Ccr4-Not complex. Nucleic Acids Res. 35, 2428-2439.
Mulder, K. W., Winkler, G. S, and Timmers, H. T. (2005) DNA damage and replication stress induced transcription of RNR genes is dependent on the Ccr4-Not complex. Nucleic Acids Res. 33, 6384-6392.
Murashige, T., and Skoog, F. (1962) A revised medium for rapid growth and bioassays with tobacco tissue cultures. Physiol. Plant 15, 473-497.
Orvar, B.L., Sangwan, V., Omann, F., and Dhindsa, R.S. (2000). Early steps in cold sensing by plant cells: the role of actin cytoskeleton and membrane fluidity. Plant J 23, 785-794.
Palma, F., Carvajal, F., Jimenez-Munoz, R., Pulido, A., Jamilena, M., and Garrido, D. (2019). Exogenous gamma-aminobutyric acid treatment improves the cold tolerance of Zucchini fruit during postharvest storage. Plant Physiol Biochem 136, 188-195.
Park, M.R., Yun, K.Y., Mohanty, B., Herath, V., Xu, F., Wijaya, E., Bajic, V.B., Yun, S.J., and De Los Reyes, B.G. (2010). Supra-optimal expression of the cold-regulated OsMyb4 transcription factor in transgenic rice changes the complexity of transcriptional network with major effects on stress tolerance and panicle development. Plant Cell Environ 33, 2209-2230.
Parker, R., and Song, H. (2004). The enzymes and control of eukaryotic mRNA turnover. Nat Struct Mol Biol 11, 121-127.
Petit, A. P., Wohlbold, L., Bawankar, P., Huntzinger, E., Schmidt, S., Izaurralde, E.et al. (2012) The structural basis for the interaction between the CAF1 nuclease and the NOT1 scaffold of the human CCR4-NOT deadenylase complex. Nucleic Acids Res. 40, 11058-11072.
Rolland, F., Moore, B., and Sheen, J. (2002) Sugar sensing and signaling in plants. Plant Cell 14, S185-205.
Sakai, A., Chibazakura, T., Shimizu, Y., and Hishinuma, F. (1992) Molecular analysis of POP2 gene, a gene required for glucose-derepression of gene expression in Saccharomyces cerevisiae. Nucleic Acids Res. 20, 6227-6233.
Salles, F. J., and Strickland, S. (1995) Rapid and sensitive analysis of mRNA polyadenylation states by PCR. PCR Methods Appl. 4, 317-321.
Sandler, H., Kreth, J., Timmers, H.T., and Stoecklin, G. (2011). Not1 mediates recruitment of the deadenylase Caf1 to mRNAs targeted for degradation by tristetraprolin. Nucleic Acids Res 39, 4373-4386.
Sanghera, G.S., Wani, S.H., Hussain, W., and Singh, N.B. (2011). Engineering cold stress tolerance in crop plants. Curr Genomics 12, 30-43.
Sarowar, S., Oh, H. W., Cho, H. S., Baek, K. H., Seong, E. S., Joung, Y. H.et al. (2007) Capsicum annuum CCR4-associated factor CaCAF1 is necessary for plant development and defence response. Plant J. 51, 792-802.
Sheu, J. J., Yu, T. S., Tong, W. F., and Yu, S. M. (1996) Carbohydrate starvation stimulates differential expression of rice alpha-amylase genes that is modulated through complicated transcriptional and posttranscriptional processes. J. Biol. Chem. 271, 26998-27004.
Sieburth, L.E., and Vincent, J.N. (2018). Beyond transcription factors: roles of mRNA decay in regulating gene expression in plants. F1000 Faculty Rev:1940Subtelny, A. O., Eichhorn, S. W., Chen, G. R., Sive, H., and Bartel, D. P. (2014) Poly(A)-tail profiling reveals an embryonic switch in translational control. Nature 508, 66-71.
Su, C.F., Wang, Y.C., Hsieh, T.H., Lu, C.A., Tseng, T.H., and Yu, S.M. (2010). A novel MYBS3-dependent pathway confers cold tolerance in rice. Plant Physiol 153, 145-158.
Sun, C.B., Suresh, A., Deng, Y.Z., and Naqvi, N.I. (2006). A multidrug resistance transporter in Magnaporthe is required for host penetration and for survival during oxidative stress. Plant Cell 18, 3686-3705.
Suzuki, Y., Arae, T., Green, P. J., Yamaguchi, J., and Chiba, Y. (2015) AtCCR4a and AtCCR4b are involved in determining the poly(A) length of granule-bound starch synthase 1 transcript and modulating sucrose and starch metabolism in Arabidopsis thaliana. Plant Cell Physiol. 56, 863-874.
Takasaki, H., Maruyama, K., Kidokoro, S., Ito, Y., Fujita, Y., Shinozaki, K., Yamaguchi-Shinozaki, K., and Nakashima, K. (2010). The abiotic stress-responsive NAC-type transcription factor OsNAC5 regulates stress-inducible genes and stress tolerance in rice. Mol Genet Genomics 284, 173-183.
Tharun, S., and Parker, R. (2001). Targeting an mRNA for decapping: displacement of translation factors and association of the Lsm1p-7p complex on deadenylated yeast mRNAs. Mol Cell 8, 1075-1083.
Tarun, S. Z. Jr., and Sachs, A. B. (1996) Association of the yeast poly(A) tail binding protein with translation initiation factor eIF-4G. EMBO J. 15, 7168-7177.
Temme, C., Zaessinger, S., Meyer, S., Simonelig, M., and Wahle, E. (2004) A complex containing the CCR4 and CAF1 proteins is involved in mRNA deadenylation in Drosophila. EMBO J. 23, 2862-2871.
Tharun, S., and Parker, R. (2001) Targeting an mRNA for decapping: displacement of translation factors and association of the Lsm1p-7p complex on deadenylated yeast mRNAs. Mol. Cell 8, 1075-1083
Tucker, M., Staples, R. R., Valencia-Sanchez, M. A., Muhlrad, D., and Parker, R. (2002) Ccr4p is the catalytic subunit of a Ccr4p/Pop2p/Notp mRNA deadenylase complex in Saccharomyces cerevisiae. EMBO J. 21, 1427-1436.
Tucker, M., Valencia-Sanchez, M. A., Staples, R. R., Chen, J., Denis, C. L.,and Parker, R. (2001) The transcription factor associated Ccr4 and Caf1 proteins are components of the major cytoplasmic mRNA deadenylase in Saccharomyces cerevisiae. Cell 104, 377-386.
van Hoof, A., and Parker R (1999) The exosome: a proteasome for RNA? Cell 99, 347-350
Vannini, C., Locatelli, F., Bracale, M., Magnani, E., Marsoni, M., Osnato, M., Mattana, M., Baldoni, E., and Coraggio, I. (2004). Overexpression of the rice Osmyb4 gene increases chilling and freezing tolerance of Arabidopsis thaliana plants. Plant J 37, 115-127.
Wahle, E., and Winkler, G.S. (2013). RNA decay machines: deadenylation by the Ccr4-not and Pan2-Pan3 complexes. Biochim Biophys Acta 1829, 561-570.
Walley, J. W., Kelley, D. R., Nestorova, G., Hirschberg, D. L., and Dehesh, K. (2010a) Arabidopsis deadenylases AtCAF1a and AtCAF1b play overlapping and distinct roles in mediating environmental stress responses. Plant Physiol. 152, 866-875.
Walley, J. W., Kelley, D. R., Savchenko, T., and Dehesh, K. (2010b) Investigating the function of CAF1 deadenylases during plant stress responses. Plant Signal Behav. 5, 802-805.
Wang, C., Wei, Q., Zhang, K., Wang, L., Liu, F., Zhao, L., Tan, Y., Di, C., Yan, H., Yu, J., Sun, C., Chen, W.J., Xu, W., and Su, Z. (2013). Down-regulation of OsSPX1 causes high sensitivity to cold and oxidative stresses in rice seedlings. PLoS One 8, e81849.
Webster, M.W., Stowell, J.A., and Passmore, L.A. (2019). RNA-binding proteins distinguish between similar sequence motifs to promote targeted deadenylation by Ccr4-Not. Elife 8.
Wilusz, C. J., Gao, M., Jones, C. L., Wilusz, J., and Peltz, S. W. (2001) Poly(A)-binding proteins regulate both mRNA deadenylation and decapping in yeast cytoplasmic extracts. RNA 7, 1416-1424.
Xie, G., Kato, H., and Imai, R. (2012). Biochemical identification of the OsMKK6-OsMPK3 signalling pathway for chilling stress tolerance in rice. Biochem J 443, 95-102.
Yang, Y.W., Chen, H.C., Jen, W.F., Liu, L.Y., and Chang, M.C. (2015). Comparative transcriptome analysis of shoots and roots of TNG67 and TCN1 rice seedlings under cold stress and following subsequent recovery: insights into metabolic pathways, phytohormones, and transcription factors. PLoS One 10, e0131391.
Yu, S. M., Kuo, Y. H., Sheu, G., Sheu, Y. J., and Liu, L. F. (1991) Metabolic derepression of alpha-amylase gene expression in suspension-cultured cells of rice. J. Biol. Chem. 266, 21131-21137.
Yu, S. M., Lee, Y. C., Fang, S. C., Chan, M. T., Hwa, S. F., and Liu, L. F. (1996) Sugars act as signal molecules and osmotica to regulate the expression of alpha-amylase genes and metabolic activities in germinating cereal grains. Plant Mol. Biol. 30, 1277-89.
Zhang, D., Chen, L., Li, D., Lv, B., Chen, Y., Chen, J.et al. (2014) OsRACK1 is involved in abscisic acid- and H2O2-mediated signaling to regulate seed germination in rice (Oryza sativa, L.). PLoS ONE 9, e97120.
Zhang, Y., Su, J., Duan, S., Ao, Y., Dai, J., Liu, J. et al. (2011) A highly efficient rice green tissue protoplast system for transient gene expression and studying light/chloroplast-related processes. Plant Methods 7, 30.
Zheng, D., and Tian, B. (2014) Sizing up the poly(A) tail: insights from deep sequencing. Trends Biochem. Sci. 39, 255-257.
Zwartjes, C. G., Jayne, S., van den Berg, D. L., and Timmers, H. T. (2004) Repression of promoter activity by CNOT2, a subunit of the transcription regulatory Ccr4-not complex. J. Biol. Chem. 279, 10848-10854.
指導教授 陸重安(Chung-An Lu) 審核日期 2020-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明