博碩士論文 106821002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:52 、訪客IP:3.144.94.134
姓名 陳嘉珮(Chia-Pei Chen)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 綠茶表沒食子兒茶素沒食子酸酯藉由微核醣核酸-143/蛋白δ同源物1路徑抑制3T3-L1前脂肪細胞的生長
(Green tea epigallocatechin gallate inhibits 3T3-L1 preadipocyte growth through the microRNA-143/DLK1 pathways)
相關論文
★ 中華鱉腦垂體甘丙氨激素之研究:cDNA選殖、表現及調控★ 辛基苯酚對3T3-L1脂肪細胞中resistin的調節作用
★ 綠茶表沒食子酸酯型唲茶素酸酯對胰島素刺激前脂肪細胞增生的抑制★ FoxO1 調節抗胰島素激素基因的表現
★ 綠茶表沒食子唲茶素沒食子酸酯受器對於人類乳癌細胞株MCF7生長的影響★ 綠茶表沒食子酸酯型唲茶素酸酯抑制第一型内皮素作用於脂肪細胞上攝入葡萄糖的訊息機制
★ 綠茶表兒茶素藉由microRNA-494路徑改善橫向主動脈繃紮術誘導型小鼠的心臟疾病★ 內皮素誘導前脂肪細胞生長的訊息路徑
★ 綠茶對前脂肪細胞生長的影響★ 綠茶唲茶素對由第一型類胰島素所調節前脂肪細胞生長的影響
★ 綠茶唲茶素對於前脂肪細胞分化的影響★ Cdk2在綠茶唲茶素調節3T3-L1前脂肪細胞的生長和細胞凋亡扮演著必要性的角色
★ 綠茶唲茶素透過MAPK相關途徑抑制3T3-L1前脂肪細胞的生長★ 第一型類胰島素生長因子、綠茶唲茶素及雌性素對3T3-L1脂肪細胞中resistin的基因表達有不同的調節效果
★ 綠茶唲茶素對前脂肪細胞內活性氧及榖胱甘肽的影響★ 胰島素接受器受質在綠茶唲茶素對胰島素刺激前脂肪細胞生長作用中扮演的角色
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-1以後開放)
摘要(中) 據以前報導指出,綠茶兒茶素(GTCs)和小分子核糖核酸(miR)可分別通過改變脂肪細胞的有絲分裂和成脂過程來調節肥胖的發展。但是尚未發現有關綠茶的miR介導效應,特別是表沒食子兒茶素沒食子酸酯(EGCG)對脂肪細胞生長的影響的研究。使用3T3-L1白色前脂肪細胞,我們發現EGCG上調了20個miR分子(例如,mmu-miR-1224-5p,mmu-miR-711和mmu-miR-8108),而下調了20個miR分子(例如mmu-miR -668-3p和mmu-miR-690)。進一步RT-qPCR分析證實,EGCG時間和劑量依賴性地誘導3T3-L1前脂肪細胞miR-143和miR-let-7a水平的增加。且EGCG對miR-155的表達沒有影響,但顯著降低了Pref-1 / DLK1(miR-143的靶標)和HMGA2(miR-let-7a的靶標)mRNA和蛋白質的表現。這些數據顯示EGCG對特定類型miR家族成員具有選擇性作用。此外,在缺少EGCG的情況下,過度表達miR-143或miR-let-7a通過細胞數量的減少和降低細胞活力抑制了3T3-L1前脂肪細胞的生長。而處理miR-143抑制劑可拮抗EGCG對細胞數量和細胞活力的抑制作用。這些數據顯示,EGCG對前脂肪細胞生長具有miR-143依賴性。有趣的是,EGCG類似物穀胱甘肽激活劑,如N-乙醯半胱氨酸,刺激miR-143和miR-let-7a的表現量,而使用穀胱甘肽抑製劑(如丁硫氨酸亞碸亞胺)預處理可阻斷EGCG的作用。此外,發現AMPK抑製劑,如化合物C,可以逆轉EGCG對miR-143和miR-let-7基因表達的影響。總之,EGCG可能通過穀胱甘肽和AMPK的方式激活miR-143和miR-let-7a分子來抑制前脂肪細胞的生長。
摘要(英) Green tea catechins (GTCs) and microRNA (miR) molecules have been reported to regulate development of obesity, respectively, as characterized by changes in the mitogenic and adipogenic processes of fat cells. No studies were found on the miR-mediated effects of GTC, particularly epigallocatechin gallate (EGCG), on fat cell growth. Using 3T3-L1 white preadipocytes, we found that EGCG upregulated 20 miR molecules (e.g., mmu-miR-1224-5p, mmu-miR-711, and mmu-miR-8108) and downregulated 20 miR molecules (e.g., mmu-miR-668-3p and mmu-miR-690). Further RT-qPCR analysis confirmed that EGCG time- and dose-dependently induced increases in miR-143 and miR-let-7a levels in 3T3-L1 preadipocytes. EGCG had no effect on miR-155 expression, but it significantly induced decreases in levels of Pref1/DLK1 (a target of miR-143) and HMGA2 (a target of miR-let-7a) mRNAs and proteins. These data suggest the selective effect of EGCG on particular types of miR family members. In addition, over-expression of either miR-143 or miR-let-7a inhibited 3T3-L1 preadipocyte growth in the absence of EGCG, as indicated by decreased cell number and by reduced cell viability. Whereas, treatment with the inhibitor of miR-143 antagonized the inhibitory effect of EGCG on cell number and cell viability. These data suggest a miR-143-dependent effect of EGCG on preadipocyte growth. Interestingly, EGCG mimicked the glutathione activator, such as N-acetyl-cysteine, to stimulate miR-143 and miR-let-7a, and pretreatment with the glutathione inhibitor, such as buthionine sulphoximine, blocked such EGCG effects. Moreover, an AMPK inhibitor, such as compound C, was found to reverse the effects of EGCG on miR-143 and miR-let-7 gene expressions. In conclusions, EGCG inhibits the growth of preadipocytes through activations of miR-143 and miR-let-7a molecules in glutathione- and AMPK-dependent ways.
關鍵字(中) ★ 脂肪
★ 小分子核糖核酸
★ 表沒食子兒茶素沒食子酸酯
關鍵字(英) ★ Adipocyte
★ MicroRNA
★ EGCG
論文目次 目錄
中文摘要 i
Abstract ii
致謝 iii
目錄 iv
表目錄 vi
圖目錄 vi
縮寫與全名對照表 viii
壹、前言 1
一、 肥胖症 1
二、 脂肪細胞 1
三、綠茶 2
四、 綠茶兒茶素與脂肪之關係 2
五、 microRNA小分子核糖核酸 3
六、 microRNA與綠茶兒茶素之關係 4
七、 microRNA與脂肪之關係 4
八、 研究動機與目的 5
貳、材料與方法 7
一、 實驗材料 7
二、 實驗方法 7
1.細胞培養 7
2.藥物處理 7
3.細胞計數方法 8
4.MTT 8
5.轉染作用 8
6.基因分析 9
7.microRNA分析 10
8.西方墨點法 12
9.統計分析 13
參、實驗結果 15
一、EGCG影響前脂肪細胞內miR-143, miR-let-7a及其靶基因的表現 15
二、EGCG影響miR-7052-5p及預測靶基因的表現 16
三、 大量表達miR-143對3T3-L1 細胞數的影響 16
四、 大量表達miR-let-7a對3T3-L1 細胞數的影響 17
五、 大量表達miR-7052-5p對3T3-L1 細胞數的影響 17
六、 miR-143 inhibitor拮抗EGCG對3T3-L1細胞內miR-143, DLK1基因表現及生長的影響 18
七、 miR-7052-5p inhibitor拮抗EGCG對3T3-L1內細胞生長的影響 18
八、miR-143 mimic 和inhibitor影響3T3-L1細胞內蛋白質的表現 19
九、EGCG藉由GSH途徑而影響前脂肪細胞中miR-143、miR-let-7a和靶基因的表現 19
十、EGCG可能藉由AMPK途徑影響前脂肪細胞中miR-143、miR-let-7a和兩者靶基因的表現 21
肆、討論 24
一、 EGCG對3T3-L1前脂肪細胞中miR具有選擇性的影響 24
二、miR-143調節EGCG對3T3-L1細胞的生長的影響 24
三、miR-let-7a調節EGCG對3T3-L1細胞的生長的影響 25
四、miR-7052-5p調節EGCG對3T3-L1細胞的生長的影響 25
五、EGCG通過GSH途徑對前脂肪細胞中miR和基因的影響 26
六、 EGCG通過AMPK途徑對前脂肪細胞中miR、基因和蛋白的影響 27
伍、結論 29
陸、參考文獻 30
柒、附錄 64

表目錄
表一、材料名稱、產品型號及採購來源 37
表二、反轉錄、PCR與qPCR所使用的primers 40
表三、抗體名稱、產品型號及採購來源 41
表四、12% SDS-PAGE之配置 43
圖目錄
圖一、EGCG在不同時間點對3T3-L1前白色脂肪細胞內miR-143, miR-let-7a, miR-155及其標靶基因表現的影響 44
圖二、EGCG隨著處理劑量的不同對3T3-L1前白色脂肪細胞內miR-143, miR-let-7a, miR-155及其標靶基因表現的影響 46
圖三、EGCG對3T3-L1前脂肪細胞的miR-7052-5p, miR-7683-3p及其預測標靶基因表現量的影響 48
圖四、miR-143 mimic對3T3-L1前白色脂肪細胞內miR-143及DLK1基因和細胞增生的影響 49
圖五、miR-let-7a mimic對3T3-L1前白色脂肪細胞增生的影響 51
圖六、miR-7052-5p mimic對3T3-L1前白色脂肪細胞增生的影響 52
圖七、miR-143 inhbitor拮抗EGCG對3T3-L1前白色脂肪細胞內miR-143及其DLK1基因表現和細胞增生的影響 53
圖八、miR-7052-5p inhbitor拮抗EGCG對3T3-L1前白色脂肪細胞細胞增生的影響 55
圖九、miR-143 mimic對3T3-L1前白色脂肪細胞內ERK, AMPK, p62和LC3β蛋白質表現的影響 56
圖十、miR-143 inhibitor對3T3-L1前白色脂肪細胞內ERK, AMPK, p62, LC3β的影響 57
圖十一、EGCG類似Glutathione活化劑NAC不會改變EGCG對3T3-L1前白色脂肪細胞內miR-143, miR-let-7a, DLK1及HMGA2基因表現的影響 58
圖十二、Glutathione抑制劑BSO會拮抗EGCG對3T3-L1前白色脂肪細胞內miR-143, miR-let-7a及DLK1基因表現的影響 59
圖十三、AMPK抑制劑Compound C改變EGCG對3T3-L1前白色脂肪細胞內miR-143, miR-let-7a及DLK1基因表現的影響 60
圖十四、Compound C調節EGCG處理對3T3-L1前白色脂肪細胞內DLK1, ERK , AMPK,p62和LC3β蛋白質表現的影響 61
圖十五、overexpression DLK1拮抗EGCG對3T3-L1生長的影響 63
參考文獻 Ambros, V. (2004). <The functions of animal microRNAsThe functions of animal microRNAsThe functions of animal microRNAsThe functions of animal microRNAsvv.pdf>. 431(September).
Barbatelli, G., Murano, I., Madsen, L., Hao, Q., Jimenez, M., Kristiansen, K., …Cinti, S. (2010). The emergence of cold-induced brown adipocytes in mouse white fat depots is determined predominantly by white to brown adipocyte transdifferentiation. American Journal of Physiology - Endocrinology and Metabolism, 298(6), 1244–1253. https://doi.org/10.1152/ajpendo.00600.2009
Baselga-Escudero, L., Blade, C., Ribas-Latre, A., Casanova, E., Suárez, M., Torres, J. L., …Arola-Arnal, A. (2014). Resveratrol and EGCG bind directly and distinctively to miR-33a and miR-122 and modulate divergently their levels in hepatic cells. Nucleic Acids Research, 42(2), 882–892. https://doi.org/10.1093/nar/gkt1011
Chen, Y., Siegel, F., Kipschull, S., Haas, B., Fröhlich, H., Meister, G., &Pfeifer, A. (2013). MiR-155 regulates differentiation of brown and beige adipocytes via a bistable circuit. Nature Communications, 4. https://doi.org/10.1038/ncomms2742
Chomczynski, P., &Sacchi, N. (2006). The single-step method of RNA isolation by acid guanidinium thiocyanate-phenol-chloroform extraction: Twenty-something years on. Nature Protocols, 1(2), 581–585. https://doi.org/10.1038/nprot.2006.83
Chrostowska, M., Szyndler, A., Hoffmann, M., &Narkiewicz, K. (2013). Impact of obesity on cardiovascular health. Best Practice and Research: Clinical Endocrinology and Metabolism, 27(2), 147–156. https://doi.org/10.1016/j.beem.2013.01.004
Dai, X., &I. (2009). Page 1 of 28. Reproduction, (June), 1–28.
Esau, C., Kang, X., Peralta, E., Hanson, E., Marcusson, E. G., Ravichandran, L.V., …Griffey, R. (2004). MicroRNA-143 regulates adipocyte differentiation. Journal of Biological Chemistry, 279(50), 52361–52365. https://doi.org/10.1074/jbc.C400438200
Findeisen, H. M., Pearson, K. J., Gizard, F., Zhao, Y., Qing, H., Jones, K. L., …Bruemmer, D. (2011). Oxidative stress accumulates in adipose tissue during aging and inhibits adipogenesis. PLoS ONE, 6(4), 1–10. https://doi.org/10.1371/journal.pone.0018532
Green, H., &Kehinde, O. (1975). An established preadipose cell line and its differentiation in culture II. Factors affecting the adipose conversion. Cell, 5(1), 19–27. https://doi.org/10.1016/0092-8674(75)90087-2
Hasegawa, N., Yamda, N., &Mori, M. (2003). Powdered green tea has antilipogenic effect on Zucker rats fed a high-fat diet. Phytotherapy Research, 17(5), 477–480. https://doi.org/10.1002/ptr.1177
Huang, C. H., Tsai, S. J., Wang, Y. J., Pan, M. H., Kao, J. Y., &Way, T.Der. (2009). EGCG inhibits protein synthesis, lipogenesis, and cell cycle progression through activation of AMPK in p53 positive and negative human hepatoma cells. Molecular Nutrition and Food Research, 53(9), 1156–1165. https://doi.org/10.1002/mnfr.200800592
Huang, J. B., Zhang, Y., Zhou, Y. B., Wan, X. C., &Zhang, J. S. (2015). Effects of epigallocatechin gallate on lipid metabolism and its underlying molecular mechanism in broiler chickens. Journal of Animal Physiology and Animal Nutrition, 99(4), 719–727. https://doi.org/10.1111/jpn.12276
Hung, P. F., Wu, B. T., Chen, H. C., Chen, Y. H., Chen, C. L., Wu, M. H., …Kao, Y. H. (2005). Antimitogenic effect of green tea (-)-epigallocatechin gallate on 3T3-L1 preadipocytes depends on the ERK and Cdk2 pathways. American Journal of Physiology - Cell Physiology, 288(5 57-5), 1094–1108. https://doi.org/10.1152/ajpcell.00569.2004
Jiang, L., Tao, C., He, A., &He, X. (2014). Overexpression of miR-126 sensitizes osteosarcoma cells to apoptosis induced by epigallocatechin-3-gallate. World Journal of Surgical Oncology, 12(1), 1–7. https://doi.org/10.1186/1477-7819-12-383
Jin, M., Wu, Y., Wang, J., Chen, J., Huang, Y., Rao, J., &Feng, C. (2016). MicroRNA-24 promotes 3T3-L1 adipocyte differentiation by directly targeting the MAPK7 signaling. Biochemical and Biophysical Research Communications, 474(1), 76–82. https://doi.org/10.1016/j.bbrc.2016.04.073
Jin, W., Dodson, M.V, Moore, S. S., Basarab, J. A., &Guan, L. L. (2010). Characterization of microRNA expression in bovine adipose tissues : a potential regulatory mechanism of subcutaneous adipose tissue development.
Kao, Y. H., Chang, H. H., Lee, M. J., &Chen, C. L. (2006). Tea, obesity, and diabetes. Molecular Nutrition and Food Research, 50(2), 188–210. https://doi.org/10.1002/mnfr.200500109
Kiho, T. Yoshida, I. Katsuragawa, M. Sakushima, M. Usui, S. Ukai, S. (1994). NII-Electronic Library Service. Chemical Pharmaceutical Bulletin, 17(11), 1460–1462. Retrieved from https://www.jstage.jst.go.jp/article/bpb1993/17/11/17_11_1460/_pdf/-char/ja
Kim, K.-A., Kim, J.-H., Wang, Y., &Sul, H. S. (2007). Pref-1 (Preadipocyte Factor 1) Activates the MEK/Extracellular Signal-Regulated Kinase Pathway To Inhibit Adipocyte Differentiation. Molecular and Cellular Biology, 27(6), 2294–2308. https://doi.org/10.1128/mcb.02207-06
Kim, Y. J., Min, T. S., Seo, K. S., &Kim, S. H. (2015). Expression of pref-1/dlk-1 is regulated by microRNA-143 in 3T3-L1 cells. Molecular Biology Reports, 42(3), 617–624. https://doi.org/10.1007/s11033-014-3807-0
Kosik, K. S. (2010). MicroRNAs and cellular phenotypy. Cell, 143(1), 21–26. https://doi.org/10.1016/j.cell.2010.09.008
Ku, H. C., Chang, H. H., Liu, H. C., Hsiao, C. H., Lee, M. J., Hu, Y. J., …Kao, Y. H. (2009). Green tea (-)-epigallocatechin gallate inhibits insulin stimulation of 3T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor pathway. American Journal of Physiology - Cell Physiology, 297(1), 34–35. https://doi.org/10.1152/ajpcell.00272.2008
Ku, H. C., Liu, H. S., Hung, P. F., Chen, C. L., Liu, H. C., Chang, H. H., …Kao, Y. H. (2012). Green tea (-)-epigallocatechin gallate inhibits IGF-I and IGF-IIstimulation of 3T3-L1 preadipocyte mitogenesis via the 67-kDa laminin receptor, but not AMP-activated protein kinase pathway. Molecular Nutrition and Food Research, 56(4), 580–592. https://doi.org/10.1002/mnfr.201100438
Ku, H. C., Tsuei, Y. W., Kao, C. C., Weng, J. T., Shih, L. J., Chang, H. H., …Kao, Y. H. (2014). Green tea (-)-epigallocatechin gallate suppresses IGF-I and IGF-II stimulation of 3T3-L1 adipocyte glucose uptake via the glucose transporter 4, but not glucose transporter 1 pathway. General and Comparative Endocrinology, 199, 46–55. https://doi.org/10.1016/j.ygcen.2014.01.008
Liao, C. C., Ho, M. Y., Liang, S. M., &Liang, C. M. (2018). Autophagic degradation of SQSTM1 inhibits ovarian cancer motility by decreasing DICER1 and AGO2 to induce MIRLET7A-3P. Autophagy, 14(12), 2065–2082. https://doi.org/10.1080/15548627.2018.1501135
Liao, S. (2000). Green Tea Epigallocatechin Gallate *. Society, 141(3), 980–987.
Liu, J., Carmell, M. A., Rivas, F.V., Marsden, C. G., Thomson, J. M., Song, J. J., …Hannon, G. J. (2004). Argonaute2 is the catalytic engine of mammalian RNAi. Science, 305(5689), 1437–1441. https://doi.org/10.1126/science.1102513
Lu, G., Liao, J., Yang, G., Reuhl, K. R., Hao, X., &Yang, C. S. (2006). Inhibition of adenoma progression to adenocarcinoma in a 4-(methylnitrosamino)-1-(3-pyridyl)-1-butanone-induced lung tumorigenesis model in A/J mice by tea polyphenols and caffeine. Cancer Research, 66(23), 11494–11501. https://doi.org/10.1158/0008-5472.CAN-06-1497
Marchesini, G., Moscatiello, S., DiDomizio, S., &Forlani, G. (2008). Obesity-associated liver disease. Journal of Clinical Endocrinology and Metabolism, 93(11 SUPPL. 1), 74–80. https://doi.org/10.1210/jc.2008-1399
Matsumoto, N., Ishigaki, F., Ishigaki, A., Iwashina, H., &Hara, Y. (1993). Reduction of Blood Glucose Levels by Tea Catechin. Bioscience, Biotechnology and Biochemistry, 57(4), 525–527. https://doi.org/10.1271/bbb.57.525
Milenkovic, D., Deval, C., Gouranton, E., Landrier, J. F., Scalbert, A., Morand, C., &Mazur, A. (2012). Modulation of miRNA expression by dietary polyphenols in apoE deficient mice: A new mechanism of the action of polyphenols. PLoS ONE, 7(1). https://doi.org/10.1371/journal.pone.0029837
Potenza, M. A., Marasciulo, F. L., Tarquinio, M., Tiravanti, E., Colantuono, G., Federici, A., …Montagnani, M. (2007). EGCG, a green tea polyphenol, improves endothelial function and insulin sensitivity, reduces blood pressure, and protects against myocardial I/R injury in SHR. American Journal of Physiology - Endocrinology and Metabolism, 292(5), 1378–1387. https://doi.org/10.1152/ajpendo.00698.2006
Shen, L., Du, J., Chen, L., Luo, J., Li, X., Li, M., …Zhang, Y. (2016). MicroRNA-23a regulates 3T3-L1 adipocyte differentiation. Gene, 575(2), 761–764. https://doi.org/10.1016/j.gene.2015.09.060
Sun, T., Fu, M., Bookout, A. L., Kliewer, S. A., &Mangelsdorf, D. J. (2009). MicroRNA let-7 regulates 3T3-L1 adipogenesis. Molecular Endocrinology, 23(6), 925–931. https://doi.org/10.1210/me.2008-0298
Tan, Z., Du, J., Shen, L., Liu, C., Ma, J., Bai, L., …Zhu, L. (2017). miR-199a-3p affects adipocytes differentiation and fatty acid composition through targeting SCD. Biochemical and Biophysical Research Communications, 492(1), 82–88. https://doi.org/10.1016/j.bbrc.2017.08.030
Vigilanza, P., Aquilano, K., Baldelli, S., Rotilio, G., &Ciriolo, M. R. (2011). Modulation of intracellular glutathione affects adipogenesis in 3T3-L1 cells. Journal of Cellular Physiology, 226(8), 2016–2024. https://doi.org/10.1002/jcp.22542
Wang, C. T., Chang, H. H., Hsiao, C. H., Lee, M. J., Ku, H. C., Hu, Y. J., &Kao, Y. H. (2009). The effects of green tea (-)-epigallocatechin-3-gallate on reactive oxygen species in 3T3-L1 preadipocytes and adipocytes depend on the glutathione and 67 kDa laminin receptor pathways. Molecular Nutrition and Food Research, 53(3), 349–360. https://doi.org/10.1002/mnfr.200800013
Wise, J. (2014). Research news: Obesity rates rise substantially worldwide. BMJ (Online), 348(May), 60460. https://doi.org/10.1136/bmj.g3582
Xi, Y., Shen, W., Ma, L., Zhao, M., Zheng, J., Bu, S., …Nakao, M. (2016). HMGA2 promotes adipogenesis by activating C/EBPβ-mediated expression of PPARγ. Biochemical and Biophysical Research Communications, 472(4), 617–623. https://doi.org/10.1016/j.bbrc.2016.03.015
Xu, Q., Li, Y., Shang, Y. F., Wang, H. L., &Yao, M. X. (2015). MiRNA-103: Molecular link between insulin resistance and nonalcoholic fatty liver disease. World Journal of Gastroenterology, 21(2), 511–516. https://doi.org/10.3748/wjg.v21.i2.511
Yang, C., Hou, C., Zhang, H., Wang, D., Ma, Y., Zhang, Y., …Geng, S. (2013). miR-126 functions as a tumor suppressor in osteosarcoma by targeting Sox2. International Journal of Molecular Sciences, 15(1), 423–437. https://doi.org/10.3390/ijms15010423
Yang, C. S., &Wang, Z. Y. (1993). Tea and cancer. Journal of the National Cancer Institute, 85(13), 1038–1049. https://doi.org/10.1093/jnci/85.13.1038
Zhang, X. M., Wang, L. H., Su, D. J., Zhu, D., Li, Q. M., &Chi, M. H. (2016). MicroRNA-29b promotes the adipogenic differentiation of human adipose tissue-derived stromal cells. Obesity, 24(5), 1097–1105. https://doi.org/10.1002/oby.21467
Zhou, H., Chen, J. X., Yang, C. S., Yang, M. Q., Deng, Y., &Wang, H. (2014). Gene regulation mediated by microRNAs in response to green tea polyphenol EGCG in mouse lung cancer. BMC Genomics, 15(Suppl 11), S3. https://doi.org/10.1186/1471-2164-15-S11-S3
Watanabe J, Kawabata J, Niki R.(1998). Isolation and Identification of Acetyl-CoA Carboxylase Inhibitors from Green Tea (Camellia sinensis). Biosci Biotechnol Biochem. 1998 Mar;62(3):532-4.
指導教授 高永旭(Yung-Hsi Kao) 審核日期 2020-7-8
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明