博碩士論文 106821609 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:144 、訪客IP:3.145.94.251
姓名 黎如月(Le Nhu Nguyet)  查詢紙本館藏   畢業系所 生命科學系
論文名稱 開發新穎性包埋Dehalococcoides mccartyi及Clostridium butyricum之長效脫氯膠體
(Development of Silica Gel with Co-immobilized Dehalococcoides mccartyi and Clostridium butyricum for Long-Term Dechlorination)
相關論文
★ 4-aminobiphenyl誘導HepG2細胞中的microRNAs表現 並藉由microRNAs調控DNA修復機制★ 研究Dicrotophos對HepG2細胞毒性之分子機制:CSA蛋白質在毒性扮演之角色
★ TNT經由ROS介導之內質網壓力及粒線體失衡誘導人類肝臟細胞凋亡★ Pseudomonas sp. A46全基因組分析與重金屬復育基因工程菌開發
★ 4-Aminobiphenyl 調控 miR-630 抑制 RAD18 表現誘導 Hep3B 細胞產生氧化性 DNA 損傷★ 三硝基甲苯之毒理機制及生物降解暨多氯乙烯汙染模場生物整治
★ 探討人類肝癌細胞HepG2經4-氨基聯苯處理過後miRNA-630對於同源重組修復相關蛋白MCM8的調控機制★ 假單胞菌Pseudomonas sp. A46之基因工程菌開發及重金屬之生物累積和生物吸附潛力探討
★ 探討DNA損傷反應與慢性暴露4-胺基聯苯產生之肝臟毒性★ 以Lpp-OmpA工法建構新穎性基因工程菌強化鎘生物復育能力
★ 建構脫鹵球菌與固氮菌共培養系統促進氮源缺乏環境下的還原脫氯作用★ 硒代胱氨酸通過誘導人肝細胞癌中的 DNA 損傷和抑制 DNA 修復途徑來增強順鉑敏感性
★ 轉錄體分析 Acetobacterium woodii 降解1,1,1-三氯乙烷機制並用以協助 Dehalococcoides進行還原脫氯★ 以宏觀基因體分析新穎 Candidatus Dehalobacterium strain DLY 降解二氯甲烷機制
★ 研究雙特松對HepG2細胞之DNA修復的影響★ 金屬硫蛋白在大腸桿菌的表達與金屬累積能力測試
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 含氯有機物是一種常見於地下水汙染的致癌物質,尤其是二氯乙烯(cis-DCE)及氯乙烯(VC)最難被完全整治。脫鹵球菌(Dehalococcoides mccartyi, Dhc) 在含氯有機物之汙染整治是關鍵的菌種,本菌在環境中一旦缺乏氫氣及適當的碳源或是環境條件不佳,則會導致現地場址累積二氯乙烯及氯乙烯。丁酸梭菌(Clostridium butyricum, C. butyricum) 被我們選為應用於發酵氫氣及醋酸的主要菌種,同時搭配包埋技術應可有效提升地下水的脫氯降解速率。先前的研究中,應用包埋丁酸梭菌的膠體可以提高地下水汙染中的三氯乙烯脫氯速率,然而,地下水原生的脫鹵球菌數量不高,使得無法達到完全脫氯。本研究中欲開發一種包埋脫鹵球菌BAV1及丁酸梭菌的矽膠膠體,解決現地脫鹵球菌菌數不足之問題,該膠體的成膠利用到矽膠奈米顆粒及矽烷化物。在本研究證明在無提供氫氣及醋酸的環境下,脫鹵球菌BAV1可以成功與丁酸梭菌包埋在一起並保有脫氯活性。在高濃度二氯乙烯(8mM) 培養實驗下,本包埋矽統可以保護脫鹵球菌使其不失去活性,且本膠體擁有超過80天以上的長效脫氯活性因為脫鹵球菌受到馴化可以快速生長。在實際應用方面,厭氧批次實驗結果顯示,本膠體可以在28天將受到二氯乙烯的地下水完全脫氯至無毒的乙烯。因此,本研究成功開發新穎的脫氯包埋膠體並且擁有應用於含氯有機物汙染場地之生物整治潛力。
摘要(英) Chloroethenes are common groundwater pollutants classified as toxic and carcinogenic to humans especially cis-dichloroethene (cis-DCE) and vinyl chloride (VC). Dehalococcoides mccartyi (Dhc) are key anaerobic bacteria for bioremediation of chloroethene-contaminated sites, but the lack of hydrogen and carbon source (acetate) cause the accumulation of cis-DCE and VC. Clostridium butyricum (C. butyricum) is a priority candidate of H2 and acetate support for practical application. Cell immobilization is an effective and promising technique to enhance dechlorination rate. Previous research demonstrated that immobilized C. butyricum in silica gel showed a great potential to promote the trichloroethene dechlorination efficiency in contaminated groundwater. However, the local Dhc abundances were low resulted in stalling or incomplete dechlorination. In this study, a silica gel with co-immobilized Dhc strain BAV1 and C. butyricum was developed. Silica gel system was formed by silica nanoparticles and silicon alkoxides via a sol-gel process. BAV1 and C. butyricum were successfully co-immobilized in silica gel without the extra addition of H2 and acetate. The immobilized system could protect BAV1 from high cis-DCE concentration (8 mM). Long-term dechlorination activity of the co-immobilized system was maintained for more than 80 consecutive days due to the adaptation and rapid growth of immobilized bacteria. For the practical application, results from batch experiments showed that the developed system completely reduced cis-DCE into ethene, a non-toxic product, in the contaminated groundwater within 28 days. Therefore, this novel co-immobilized system could be a potential approach for bioremediation in the chloroethene-contaminated sites.
關鍵字(中) ★ 脫鹵球菌
★ 丁酸梭菌
★ 包埋
★ 矽膠
★ 生物整治
關鍵字(英) ★ Dehalococcoides mccartyi
★ Clostridium butyricum
★ co-immobilized
★ silica gel
★ bioremediation
論文目次 CHINESE ABSTRACT i
ENGLISH ABSTRACT ii
ACKNOWLEDGEMENTS iii
TABLE OF CONTENTS iv
LIST OF FIGURES vii
LIST OF TABLES viii
LIST OF APPENDIXES ix
ABBREVIATIONS x
INTRODUCTION 1
1. Background 1
2. Technologies for removal of chlorinated ethenes 1
3. Research objective 3
LITERATURE REVIEW 4
1. Chlorinated ethenes 4
2. Abiotic and biotic degradation of chlorinated ethenes 4
3. Dehalococcoides mccartyi strain BAV1 5
4. Clostridium butyricum 6
5. Silica gel bioencapsulation system 6
MATERIALS AND METHODS 8
1. Equipment and chemicals 8
1.1 Equipment 8
1.2 Chemicals 8
2. Bacterial strains and growth conditions 12
2.1 Dehalococcoides mccartyi strain BAV1 12
2.2 Clostridium butyricum 13
3. Cloning 14
3.1 PCR 14
3.2 Gel extraction 15
3.3 Digestion 15
3.4 Ligation 16
3.5 TSS competent cell 16
3.6 Transformation of E. coli competent cells 17
3.7 Plasmid extraction and purification 17
4. DNA extraction and cell number quantification 19
4.1 DNA extraction 19
4.2 Cell number quantification by using qPCR 20
5. Silica gel encapsulation system 22
5.1 Reagents 22
5.2 Experimental procedure 22
6. Chemical analysis 23
RESULTS AND DISCUSSION 25
1. Dechlorination of cis-DCE by Dehalococcoides mccartyi strain BAV1 25
2. Growth curve of Clostridium butyricum and its ability to produce hydrogen and acetate 25
3. Co-culture of free BAV1 and Clostridium butyricum 26
4. Dechlorination of cis-DCE by immobilized Dhc strain BAV1 in silica gel 26
5. Co-immobilization of BAV1 and Clostridium butyricum for cis-DCE dechlorination 27
6. Protective ability of immobilized BAV1 system in silica gel 27
7. Long-term dechlorination of co-immobilized BAV1 and Clostridium butyricum in silica gel 28
8. Contaminated groundwater application 28
CONCLUSION AND FUTURE WORK 30
1. Conclusion 30
2. Future work 30
FIGURES 31
TABLES 40
REFERENCES 47
APPENDIXES 54
參考文獻 1. Löffler, F. E., Champine, J. E., Ritalahti, K. M., Sprague, S. J., & Tiedje, J. M. (1997). Complete Reductive Dechlorination of 1,2-Dichloropropane by Anaerobic Bacteria. Applied and Environmental Microbiology, 63(7), 2870-2875
2. He, J., Ritalahti, K. M., Aiello, M. R., & Löffler, F. E. (2003a). Complete detoxification of vinyl chloride by an anaerobic enrichment culture and identification of the reductively dechlorinating population as a Dehalococcoides species. Applied and Environmental Microbiology, 69(2), 996-1003
3. U.S. Environmental Protection Agency. (2001). Toxics Release Inventory Public Data Release Report; 260-R-03-001; Office of Environmental Information: Washington, DC, 2003
4. Minnesota Pollution Control Agency 2006 – MPCA
5. ATSDR (1996, 2006 & 2007). Agency for Toxic Substances and Disease Registry. US Public Health Service, US Department of Health and Human Services.
6. Pankow, J. F., & Cherry, J. A. (1996). Dense Chlorinated Solvents and Other DNAPLs in Groundwater. Waterloo Press, Portland, OR. ISBN 0964801418
7. Moran, M. J., Zogorski, J. S., & Squillace P. J. (2007). Chlorinated solvents in groundwater of the United States. Environmental Science & Technology, 41, 74-81
8. Panagos, P., Liedekerke., M. V., Yigini, Y., & Montanarella, L. (2013). Contaminated Sites in Europe: Review of the Current Situation Based on Data Collected through a European Network. Environmental and Public Health
9. EPA (2019). Environmental Protection Administration, ROC (Taiwan)
10. Wang, C. C., Li, C. H. & Yang, C. F. (2019). Acclimated methanotrophic consortia for aerobic co-metabolism of trichloroethene with methane. International Biodeterioration & Biodegradation, 142, 52-57
11. Beeman, R. E., Howell, J. E., Shoemaker, S. H., Salazar, E. A., & Buttram, J. R. (1994). A field evaluation of in situ microbial reductive dehalogenation by transformation of chlorinated ethylenes. In: Hinchee RE, Leeson A, Semprini L, Ong SK (eds), Bioremediation of chlorinated and polycyclic aromatic hydrocarbon compounds. Lewis Publishers, Boca Raton, Fla, 14-27
12. Löffler, F. E., Sun, Q., Li, J., & Tiedje, J. M. (2000). 16S rRNA Gene-Based Detection of Tetrachloroethene Dechlorinating Desulfuromonas and Dehalococcoides Species. Applied and Environmental Microbiology, 2000, 1369-1374
13. Olaniran, A. O., Pillay, D., & Pillay, B. (2004). Chloroethenes contaminants in the environment: Still a cause for concern. African Journal of Biotechnology, 3(12), 675-682
14. Bezbaruah, A. N., Shanbhogue, S. S., Simsek, S., & Khan, E. (2011). Encapsulation of iron nanoparticles in alginate biopolymer for trichloroethylene remediation. Journal of Nanoparticle Research, 13, 6673-6681
15. Shanbhogue, S. S., Bezbaruah, A., Simsek, S., & Khan, E. (2017). Trichloroethene removal by separately encapsulated and coencapsulated bacterial degraders and nanoscale zero-valent iron. International Biodeterioration & Biodegradation, 1-8
16. Chen, Y. M., Lin, T. F., Huang, C., Lin, J. C., & Hsieh, F. M. (2007). Degradation of phenol and TCE using suspended and chitosan-bead immobilized Pseudomonas putida. Hazardous Materials, 148, 660-670
17. Mao, X., Oremland, R. S., Liu, T., Gushgari, S., Landers, A. A., Baesman, S. M., & Alvarez-Cohen, L. (2017). Acetylene Fuels TCE Reductive Dechlorination by Defined Dehalococcoides/Pelobacter Consortia. Environmental Science & Technology, 51, 2366-2372
18. Dolinová, I., Štrojsová, M., Černík, M., Němeček, J., Macháčková, J., & Ševců, A. (2017). Microbial degradation of chloroethenes: a review. Environmental Science and Pollution Research
19. Duhamel, M., Mo, K., & Edwards, E. A. (2004). Characterization of a highly enriched Dehalococcoides-containing culture that grows on vinyl chloride and trichloroethene. Applied and Environmental Microbiology, 70, 5538-5545
20. Mao, X., Stenuit, B., Polasko, A., & Alvarez-Cohen, L. (2015). Efficient Metabolic Exchange and Electron Transfer within a Syntrophic Trichloroethene-Degrading Coculture of Dehalococcoides mccartyi 195 and Syntrophomonas wolfei. American Society for Microbiology, 81(6)
21. Lo, K. H., Lu, C. W., Lin, W. H., Chien, C. C., Chen, S. C., & Kao, C. M. (2019). Enhanced reductive dechlorination of trichloroethene with immobilized Clostridium butyricum in silica gel. Chemosphere, 238
22. Sakkos, J. K., Kieffer, D. P., Mutlu, B. R., Wackett, L. P., & Aksan, A. (2016). Engineering of a Silica Encapsulation Platform for Hydrocarbon Degradation Using Pseudomonas sp. NCIB 9816-4. Biotechnology and Bioengineering, 113, 513-521
23. Wang, S. Q., Chen, C. Y., Wang, Y., Low, A., Lu, Q. H., Qiu, R. L. (2016). Integration of organohalide-respiring bacteria and nanoscale zero-valent iron (Bio-nZVI-RD): A perfect marriage for the remediation of organohalide pollutants? Biotechnology Advances, 35, 1384-1395
24. Tandoi, V., Distefano, T. D., Bowser, P. A, Gossett, J. M, & Zinder, S. H. (1994). Reductive dehalogenation of chlorinated ethenes and halogenated ethanes by a high-rate anaerobic enrichment culture. Environmental Science & Technology, 28, 973-979
25. Tobiszewski, M., & Namieśnik, J. (2012). Abiotic degradation of chlorinated ethanes and ethenes in water. Environmental Science and Pollution Research, 19, 1994-2006
26. Dong, Y., Liang, X., Krumholz, L. R, Philp, R. P., & Butler, E. C. (2009). The relative contributions of abiotic and microbial processes to the transformation of tetrachloroethylene and trichloroethylene in anaerobic microcosms. Environmental Science & Technology, 43,690-697
27. He, J., Ritalahti, K. M., Yang, K. L., Koenigsberg, S. S., & Löffler, F. E. (2003b). Detoxification of vinyl chloride to ethene coupled to growth of an anaerobic bacterium. Nature, 424, 62-65.
28. Smidt, H., & de Vos, W. M. (2004). Anaerobic microbial dehalogenation. Annual Review of Microbiology, 58, 43-73
29. Sung, Y., Ritalahti, K. M., Apkarian, R. P., & Löffler, F. E. (2006). Quantitative PCR confirms purity of strain GT, a novel trichloroethene-to-ethene respiring Dehalococcoides isolate. Applied and Environmental Microbiology, 72, 1980-1987
30. Cheng, D., & He, J. (2009). Isolation and Characterization of “Dehalococcoides” sp. Strain MB, Which Dechlorinates Tetrachloroethene to trans-1,2-Dichloroethene. Applied and Environmental Microbiology, 75(18) 5910-5918
31. He, J., Sung, J., Krajmalnik-Brown, R., Ritalahti, K. M., & Löffler, F. E. (2005). Isolation and characterization of Dehalococcoides sp. strain FL2, a trichloroethene (TCE)- and 1,2-dichloroethene-respiring anaerobe. Environmental Microbiology, 7, 1442-1450
32. Krajmalnik-Brown, R., Hölscher, T., Thomson, I. N., Saunders, F. M., Ritalahti, K. M., & Löffler, F. E. (2004). Genetic Identification of a Putative Vinyl Chloride Reductase in Dehalococcoides sp. Strain BAV1. Applied and Environmental Microbiology, 70, 6347-6351
33. Maphosa F., Lieten, S. H., Dinkla, I., Stams, A. J., Smidt, H., Fennell, D. E. (2012). Ecogenomics of microbial communities in bioremediation of chlorinated contaminated sites. Frontiers in Microbiology, 3, 1-14
34. Hug, L. A., Beiko, R. G., Rowe, A. R., Richardson, R. E., & Edwards, E. A. (2012). Comparative metagenomics of three Dehalococcoides-containing enrichment cultures: the role of the non-dechlorinating community. BMC Genomics, 13, 1-19
35. Löffler, F. E., & Edwards, E. A. (2006). Harnessing microbial activities for environmental cleanup. Current Opinion in Biotechnology, 17, 274-84
36. He, J., Holmes, V. F., Lee, P. K. H., & Alvarrez-Cohen, L. (2007). Influence of Vitamin B12 and Cocultures on the Growth of Dehalococcoides Isolates in Defined Medium. Applied and Environmental Microbiology, 2847-2853
37. Amos, B. K., Ritalahti, K. M., Cruz-Garcia, C., Padilla-Crespo, E., & Löffler, F. E. (2008). Oxygen Effects on Dehalococcoides Viability and Biomarker Quantification. Environmental Science & Technology, 42(15) 5718-5726
38. Yan, J., Rash, B. A., Rainey, F. A, Moe, W. M. (2009). Detection and quantification of Dehalogenimonas and "Dehalococcoides" populations via PCR-based protocols targeting 16S rRNA genes. Applied and Environmental Microbiology, 75
39. Yi, S., Seth, E. C., Men, Y. J., Stabler, S. P., Allen, R. H., & Alvarez-Cohen, L. (2012). Versatility in corrinoid salvaging and remodeling pathways supports corrinoid-dependent metabolism in Dehalococcoides mccartyi. Appl Environ Microbiol, 78, 7745-7752
40. Saiyari, D. M., Chuang, H. P., Senoro, D. B., Lin, T. F., Whang, L. M., Chiu, Y. T., & Chen, Y. H. (2017). A review in the current developments of genus Dehalococcoides, its consortia and kinetics for bioremediation options of contaminated groundwater. Sustainable environment research, 28, 149-157
41. Szymanowska-Powalowska, D., Orczyk, D., & Leja, K. (2014). Biotechnology potential of Clostridium butyricum bacteria. Brazilian Journal of Microbiology, 45(3), 892-901
42. Bahl, H., & Dürre, P. (2001). Clostridia Biotechnology and Medical Applications. West Virginia Press Association, Weinheim
43. Oh, S. E., Zuo, Y., Zhang, H., Guitinan, M. J., Logan, B. E., & Regan, J. M. (2009). Hydrogen production by Clostridium acetobutylicum ATCC 824 and megaplasmid-deficient mutant M5 evaluated using a large headspace volume technique. International Journal of Hydrogen Energy, 34, 9347-9353
44. Beckers, L., Hiligsmann, S., Hamilton, C., Masset, J., & Thonart, P. (2010). Fermentative hydrogen production by Clostridium butyricum CWBI1009 and Citrobacter freundii CWBI952 in pure and mixed cultures. Biotechnology, Agronomy, Society and Environment, 14(2), 541-548
45. Sakkos, J. K., Mutlu, B. R., Wackett, L. P., & Aksan, A. (2017). Adsorption and biodegradation of aromatic chemicals by bacteria encapsulated in a hydrophobic silica gel. Applied Materials & Interfaces
46. Xie, F., Lu, Q., de Toledo, R. A., & Shim, H. (2016). Enhanced simultaneous removal of MTBE and TCE mixture by Paracoccus sp. immobilized on waste silica gel. International Biodeterioration & Biodegradation, 114, 222-227
47. Marseaut, S., Debourg, A., Dostalek, P., Votruba, J., Kuncová, G., & Tobin, J. M. (2004). A silica matrix biosorbent of cadmium. International Biodeterioration & Biodegradation, 54, 209-214
48. Stroo, H. F., Leeson, A., & Ward, C. H. (2013). Bioaugmentation for Groundwater Remediation. Environmental Remediation Technology.
49. Schaefer, C. E., Lavorgna, G. M., Annable, M. D. (2018). Long-Term Impacts on Groundwater and Reductive Dechlorination following Bioremediation in a Highly Characterized Trichloroethene DNAPL Source Area. Department of Environmental Engineering Sciences, University of Florida
50. Torlapati, J., Clement, T. P., Schaefer, C. E., & Lee, K. K. (2012). Modeling Dehalococcoides sp. Augmented Bioremediation in a Single Fracture System. Ground Water Monitoring & Remediation.
51. Zhao, S., & He. J. (2019). Reductive dechlorination of high concentration of chloroethenes by a Dehalococcoides mccartyi strain 11G. FEMS Microbiology Ecology, 95
52. McDermott, C., & Heffron, J. J. A. (2013). Toxicity of Industrially Relevant Chlorinated Organic Solvents In Vitro. International Journal of Toxicology, 32(2), 136-145
53. Liu, Y., Dai, C., Wang, K., Zou, C., Gao, M., Fang, Y., Zhao, M., Wu, Y., & You, Q. (2017). Study on a Novel Cross-Linked Polymer Gel Strengthened with Silica Nanoparticles. Energy & Fuels, 31, 9152-9161
54. Jeanfils, J., & Thomas, D. (1986). Culture and nitrite uptake in immobilized Scenedesmus obliquus. Applied Microbiology and Biotechnology, 24,417-422
55. Naomi, S. K., Yasuhiro, I., Toshikuni, Y. (2000). Intraparticle cell growth and cell leakage in cultures of Nicotiana tabacum cells immobilized in calcium alginate gel beads. Journal of Chemical Technology & Biotechnology, 75, 1008-1014
56. Zhou, Y. Z., Yang, J., Wang, X. L., Pan, Y. Q., Li, H., Zhou, D., Liu, Y. D., Wang, P., Gu, J. D, Lu, Q., Qiu, Y. F., & Lin, K. F. (2014). Bio-beads with immobilized anaerobic bacteria, zero-valent iron, and active carbon for the removal of trichloroethane from groundwater. Environmental Science and Pollution Research
指導教授 陳師慶(Ssu-Ching Chen) 審核日期 2020-7-9
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明