博碩士論文 105230003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:42 、訪客IP:3.144.116.159
姓名 鄭光佑(Kuang-Yu Chang)  查詢紙本館藏   畢業系所 生物物理研究所
論文名稱
(Deuterium NMR Study of the effect of 7- dehydrocholesterol on the POPE Membranes)
相關論文
★ 用氘核磁共振儀研究含高濃度麥角脂醇的DPPC人造膜之分子交交互作用★ Fluorescence study of lipid membranes containing sterol
★ 含固醇的脂質雙層膜的形態及相行為的研究★ The effects of composition and thermal history on the properties of supported lipid bilayers
★ The effect of sterol on the POPE/DPPC membranes★ 麥角固醇對含膽固醇的脂雙層膜的影響
★ Deuterium NMR Study of the Effect of Stigmasterol on POPE Membranes★ 運用氘核磁共振儀研究POPC/cholesterol膜之物理性質
★ 模型細胞膜(含有相同碳鏈的PC/PE)存在或缺乏固醇類的物理性質★ 運用氘核磁共振研究DPPC/POPE/sterol人造細胞膜之物理性質
★ Phase Behavior and Molecular Interactions of Membranes Containing Phosphatidylcholines and Sterol: A Deuterium NMR Study★ The physical properties of phytosterol-containing lipid bilayers
★ An AFM Study on Supported Lipid Bilayers with and without Sterol★ β-谷固醇對POPE膜物理特性的影響
★ 固醇結構對PC膜物理特性的影響★ 人造細胞膜的相行為及脂質-固醇交互作用之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 固醇在生物膜的組成與功能中扮演了重要的角色。在含有膽固醇的人造細胞膜研究中發現,將膽固醇加入脂質膜中後會形成sterol-rich以及sterol-poor的區塊。一般認為這些處於liquid-ordered態的sterol-rich區塊為細胞膜上的脂筏。在本論文中,我們研究7- dehydrocholesterol (7DHC)對於POPE-d31膜在物理性質方面的影響。本研究使用氘核磁共振 (2H NMR) 來測量由POPE-d31和7- dehydrocholesterol (7DHC) 所組成的人造細胞膜。將不同濃度的7DHC樣品在不同溫度下量測已取得核磁共振光譜。光譜的M1值呈現出7DHC使膠態POPE脂膜變得無序,並使液晶態的脂膜變得有序。透過NMR光譜取得之溫度對7DHC濃度的POPE-d31脂質膜相圖顯示出膠態-液晶態共存與液晶態-inverted hexagonal態兩種兩相共存的區域,其中液晶態同時被發現在兩種兩相共存區域內。隨著7DHC濃度增加,液晶態從無序轉變成有序。這證明了POPE脂膜在含有7DHC時存在liquid-ordered 態。然而,在此系統中兩種液態相並沒有被觀測到同時存在。另一方面,7DHC 促進liquid-ordered態在膠態POPE脂膜中的形成。最後,高濃度與低濃度的7DHC對液晶態相變至inverted hexagonal態的影響有明顯的差異。
摘要(英) Sterols play important roles in membrane organization and functions. Model membranes containing cholesterol reveal that the addition of cholesterol in lipid membranes promotes sterol-rich, liquid-ordered-phase domains. In this work, we investigate the effect of 7- dehydrocholesterol (7DHC) on the physical properties of 1-palmitoyl(d31)-2-oleoyl-sn-glycero-3-phosphoethanolamine (POPE-d31) membranes using deuterium nuclear magnetic resonance. 2H NMR spectra are taken as a function of temperature and 7DHC concentration. The spectral first moments show that 7DHC disorders the gel phase and order the liquid-crystalline phase of POPE membranes. The phase diagram, constructed from the NMR spectra exhibits gel-liquid crystalline and liquid crystalline-inverted hexagonal phase coexistence regions. One liquid crystalline phase is observed in between these two two-phase regions. The liquid crystalline phase evolves from the liquid-disordered phase to the liquid-ordered phase as the 7DHC concentration increases. This is the first demonstration that liquid-ordered phase exists in POPE membranes containing 7DHC. However, liquid-liquid phase coexistence is not observed in this system. On the other hand, 7DHC promotes the liquid-ordered phase in the gel-phase POPE membranes. Finally, the liquid crystalline-to-inverted
iii
hexagonal phase transition exhibits dramatically different 7DHC concentration dependence at low and high concentrations.
關鍵字(中) ★ 7DHC
★ POPE
關鍵字(英) ★ 7DHC
★ POPE
論文目次 摘要 i
Abstract ii
Contents iv
List of Figures v
Chapter 1 Introduction 1
1.1 Structure of Cell Membrane 1
1.2 Phase Behavior 3
1.3 Model Membranes Containing POPE and Sterol 5
1.4 The Structures of POPE and Sterol 7
1.5 Inverted Hexagonal Phase 9
Chapter 2 Materials and Methods 11
2.1 2H Nuclear Magnetic Resonance Spectroscopy 11
2.1.1 The Principle of 2H NMR 11
2.1.2 The electric quadrupole interaction 13
2.1.3 Powder Spectrum 15
2.1.4 Characteristic Spectrum 17
2.2 Materials 18
2.2.1 Sample Preparation 19
2.2.2 2H NMR Measurement 20
2.2.3 First Moment 21
2.2.4 Depaked Spectra 23
Chapter 3 Results and Discussion 25
3.1 POPE-D31/7DHC Membranes 25
3.2 The Temperature-Composition Phase Diagram 39
Chapter 4 Conclusion 46
Reference 50
參考文獻 [1] J. L. Res, "The challenge of lipid rafts," Journal of Lipid Research, no. 50, pp. 323-328, 2009.
[2] S J Singer, G L Nicolson, "The Fluid Mosaic Model of the Structure of Cell Membranes," Science, no. 175, pp. 720-731, 18 Feb 1972 .
[3] D. A. Brown and E. London, "FUNCTIONS OF LIPID RAFTS," Annu. Rev. Cell Dev. Biol, no. 14, pp. 111-36, 1998.
[4] Deborah A. Brown and Erwin London, "Structure and Function of Sphingolipid- and Cholesterol-rich Membrane Rafts," journal of biological chemistry, no. 275, pp. 17221-17224, 18 April 2000.
[5] Kai Simons and Robert Ehehalt, "Cholesterol, lipid rafts, and disease," J. Clin. Invest, no. 110, pp. 597-603, 2002.
[6] Kai simos and Elina Ikone, "functional rafts in cell membranes," Nature, no. 387, pp. 569-572, 1997.
[7] J. L. Rubenstein, B. A. Smith, and H. M. McConnell, "Lateral Diffusion in Binary Mixtures of Cholesterol and Phosphatidylcholines," Proc. Natl. Acad. Sci. USA, no. 76, pp. 15-18, 1979.
[8] John F. Naglea and Stephanie Tristram-Nagle, "Structure of lipid bilayers," Biochim Biophys Acta., no. 1469, pp. 159-195, 2000.
[9] Sean Munro, "Lipid Rafts: Elusive or Illusive?," Cell, no. 115, pp. 377-388, 2003.
[10] C. Tanford, The Hydrophobic Effect, 2 ed., New York: Wiley, 1980.
[11] Emil Endress, Sybille Bayerl, Katrin Prechtel, Christian Maier,Rudolf Merkel, and Thomas M. Bayerl,, "The Effect of Cholesterol, Lanosterol, and Ergosterol on Lecithin Bilayer Mechanical Properties at Molecular and Microscopic Dimensions: A Solid-State NMR and Micropipet Study," Langmuir, no. 18, pp. 3293-3299, 2002.
[12] Xiaolian Xu and Erwin London, "The Effect of Sterol Structure on Membrane Lipid Domains Reveals How Cholesterol Can Induce Lipid Domain Formation†," Biochemistry, no. 39, pp. 843-849, 2000.
[13] Chantal Pare and Michel Lafleur, "Polymorphism of POPE/cholesterol system: a 2H nuclear magnetic resonance and infrared spectroscopic investigation.," Biophysical Journal, no. 39, pp. 899-909, 1998.
[14] P. L. Yeagle, The Structure of Biological Membranes, 2 ed., CRC Press, 2004.
[15] M. Caffrey, "Kinetics and mechanism of the lamellargel ⁄ lamellar liquid-crystal and lamellar ⁄ inverted hexagonalphase transition in phosphatidylethanolamine: a real-timeX-ray diffraction study using synchrotron radiation.," Biochemistry, no. 24, pp. 4826-4844, 1985.
[16] C Santivarangkna, U Kulozik and P Foerst, "Inactivation Mechanisms of Lactic Acid Starter Cultures Preserved by Drying Processes," Journal of Applied Microbiology, no. 105, pp. 1-13, 2008.
[17] David F. Bocian and Sunney I. Chan, "NMR Studies of Membrane Structure and Dynamics," Phys. Chem., no. 29, pp. 30-35, 1978.
[18] L. J. Pike., lipid rafts: bring order to chaos, J lipid, 2003, pp. 655-667.
[19] J.H. Davis, K.R. Jeffrey, M. Bloom, M.I. Valic, T.P. Higgs, "Quadrupolar echo deuteron magnetic resonance spectroscopy in ordered hydrocarbon chains," Chemical Physics Letters, no. 42, pp. 390-394, 1 9 1976.
[20] M Lafleur, B Fine, E Sternin, P R Cullis, M Bloom, "Smoothed orientational order profile of lipid bilayers by 2H-nuclear magnetic resonance.," Biophys J, no. 56, pp. 1037-1041, 11 1989.
[21] Lafleur M, Cullis PR, Fine B, Bloom M., “Comparison of the orientational order of lipid chains in the L alpha and HII phases.,” Pubmed, 11 9 1990.
[22] C. P. Slichter, Principles of Magnetic Resonance, New York: Springer-Verlag, 1990.
指導教授 薛雅薇(Ya-Wei Hsueh) 審核日期 2020-7-7
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明