參考文獻 |
1. Markus HS, van der Worp HB, Rothwell PM. Posterior circulation ischaemic stroke and transient ischaemic attack: diagnosis, investigation, and secondary preven-tion. Lancet Neurol. 2013;12(10):989-998. doi:10.1016/S1474-4422(13)70211-4.
2. Stayman AN, Nogueira RG, Gupta R. A systematic review of stenting and angioplasty of symptomatic extracranial vertebral artery stenosis. Stroke. 2011;42(8):2212-2216. doi:10.1161/STROKEAHA.110.611459.
3. Compter A, van der Worp HB, Schonewille WJ, et al. Stenting versus medical treat-ment in patients with symptomatic vertebral artery stenosis: a randomised open-label phase 2 trial. Lancet Neurol. 2015;14(6):606-614. doi:10.1016/S1474-4422(15)00017-4.
4. Markus HS, Larsson SC, Kuker W, et al. Stenting for symptomatic vertebral artery ste-nosis: The Vertebral Artery Ischaemia Stenting Trial. Neurology. 2017;89(12):1229-1236. doi:10.1212/WNL.0000000000004385.
5. Carson C, Belongie S, Greenspan H and Malik J, "Blobworld: image segmentation us-ing expectation-maximization and its application to image querying," in IEEE Transac-tions on Pattern Analysis and Machine Intelligence, vol. 24, no. 8, pp. 1026-1038, Aug. 2002, doi: 10.1109/TPAMI.2002.1023800.
6. Minaee S, Boykov Y, Porikli Fatih, et al. Image Segmentation Using Deep Learning: A Survey. arXiv:2001.05566, 2020. https://arxiv.org/abs/2001.05566v4
7. Najafabadi MM, Villanustre F, Khoshgoftaar TM, et al. Deep learning applications and challenges in big data analytics. Journal of Big Data, vol. 2, no. 1, pp. 1-21, 2015. doi: 10.1186/s40537-014-0007-7
8. S. B. Kotsiantis. Supervised machine learning: A review of classification techniques. Informatica (Slovenia), 31(3):249–268, 2007.
9. Levoy M, "Display of surfaces from volume data," in IEEE Computer Graphics and Applications, vol. 8, no. 3, pp. 29-37, May 1988, doi: 10.1109/38.511.
10. Moore CS, Liney GP, Beavis AW, Saunderson JR. A method to produce and validate a digitally reconstructed radiograph-based computer simulation for optimisation of chest radiographs acquired with a computed radiography imaging system. Br J Radiol. 2011;84(1006):890-902. doi:10.1259/bjr/30125639.
11. A. Huang, C. Lee, C. Yang and H. Liu, "Volume Visualization for Improving CT Lung Nodule Detection*," 2019 41st Annual International Conference of the IEEE Engineering in Medicine and Biology Society (EMBC), Berlin, Germany, 2019, pp. 1035-1038, doi: 10.1109/EMBC.2019.8856849.
12. LC. Chen, Y Zhu, G Papandreou, et al. Encoder-Decoder with Atrous Separable Convo-lution for Semantic Image Segmentation. In ECCV, 2018. 1, 2, 7, 8. DOI:10.1007/978-3-030-01234-2_49.
13. Liang-Chieh Chen, George Papandreou, Florian Schroff, and Hartwig Adam. Re-thinking atrous convolution for semantic image segmentation. CoRR, abs/1706.05587, 2017.
14. G. Lin, A. Milan, C. Shen and I. Reid, "RefineNet: Multi-path Refinement Networks for High-Resolution Semantic Segmentation," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017, pp. 5168-5177, doi: 10.1109/CVPR.2017.549.
15. H. Zhao, J. Shi, X. Qi, X. Wang and J. Jia, "Pyramid Scene Parsing Network," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017, pp. 6230-6239, doi: 10.1109/CVPR.2017.660..
16. F. Chollet, "Xception: Deep Learning with Depthwise Separable Convolutions," 2017 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Honolulu, HI, 2017, pp. 1800-1807, doi: 10.1109/CVPR.2017.195..
17. K. He, X. Zhang, S. Ren and J. Sun, "Deep Residual Learning for Image Recogni-tion," 2016 IEEE Conference on Computer Vision and Pattern Recognition (CVPR), Las Vegas, NV, 2016, pp. 770-778, doi: 10.1109/CVPR.2016.90..
18. Ronneberger O, Philipp F, and Thomas B. "U-net: Convolutional networks for bio-medical image segmentation." In International Conference on Medical image compu-ting and computer-assisted intervention, pp. 234-241. Springer, Cham, 2015.
19. Badrinarayanan V, Kendall A and Cipolla R, "SegNet: A Deep Convolutional Encod-er-Decoder Architecture for Image Segmentation." In IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 39, no. 12, pp. 2481-2495, 1 Dec. 2017, doi: 10.1109/TPAMI.2016.2644615.
20. Lee CW, Huang A, Wang YH, Yang CY, Chen YF, Liu HM. Intracranial dural arte-riovenous fistulas: diagnosis and evaluation with 64-detector row CT angiography. Radiology. 2010;256(1):219-228. doi:10.1148/radiol.10091835 |