博碩士論文 107327020 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:49 、訪客IP:3.137.189.226
姓名 盧德澐(Te-Yun Lu)  查詢紙本館藏   畢業系所 光機電工程研究所
論文名稱 雙極脈衝直流反應式濺鍍氮化鋁薄膜與光學發射光譜大數據分析輔助預測薄膜殘留應力最小化之研究
(Minimizing film residual stress with in-situ OES big data using principle component analysis of deposited AlN films by pulsed DC reactive sputtering)
相關論文
★ 快速鑄造與單/雙蠟注射成型在歧管熔模鑄造中尺寸一致性的比較★ 伺服數控電動壓床壓型參數最佳化以改善碳化鎢超硬合金燒結後品質不良之研究
★ 彈性元件耦合多頻寬壓電獵能器設計、製作與性能測試★ 無心研磨製程參數優化研究
★ 碳纖維樹脂基複合材料真空輔助轉注成型研究-以縮小比例(1/5)汽車引擎蓋為例★ 精密熱鍛模擬及模具合理化分析
★ 高頻元件重佈線層銅電鍍製程與光阻裂紋研究★ 模組化滾針軸承自動組裝設備設計開發與功能驗證
★ 迴轉式壓縮機消音罩吐出口位置對壓縮機低頻噪音影響之研究★ 雷射焊補運用於壓鑄模具壽命改善研究
★ 晶粒成長行為對於高功率元件可靠度改善的驗證★ HF-ERW製管製程分析及SCADA 工業4.0運用
★ 結合模流分析與實驗設計實現穩健射出成型與理想成型視窗的預測★ 精密閥件射出成形製程開發-CAE模擬與開模驗證
★ 內窺鏡施夾器夾爪熱處理斷裂分析與改善驗證★ 物理蒸鍍多層膜刀具對於玻璃纖維強化塑膠加工磨耗研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-29以後開放)
摘要(中) 本論文研究目的是氮化鋁(AlN)薄膜沉積在Si(100)上,並研究了隨沉積條件變化而產生的最小殘餘應力。鋁靶的脈衝直流反應濺射是在氮氣(N2)和氬氣(Ar)的氣體比例為N2:Ar的比例為15:15至60:15且功率為400W至1000W的條件下進行的。通過X光射線繞射分析(X-ray diffraction, XRD)、掃描電子顯微鏡(Scanning electron microscope, SEM)、表面輪廓儀(Alpha-Step)、傅立葉轉移紅外光譜(Fourier transform infrared spectroscopy, FTIR)光譜,並根據與薄膜微觀結構信息相關的光學發射光譜(Optical Emission Spectroscopy, OES)研究的大數據,沉積AlN薄膜的應力狀態會受到N2流量和功率的關鍵參數影響,這與主要的的自由基N2(315nm,336 nm),Al(394nm,396 nm)和Ar(750nm,811 nm)來構建分類器來預測殘餘應力。此外,殘餘應力(VRS)的建議值可以通過PC1-DEV(第一主分量方向上的標準偏差)方法來計算,以準確預測沉積AlN薄膜的應力狀態,區分為壓應力(tensile stress)或拉應力(compressive stress),作為AlN薄膜沉積時,可以及時方式檢驗薄膜的品質。建立VRS(Value of Residual Stress)分類器來預測不同的應力狀態,即VRS平均值為0.12 / -0.21,再搭配上3σ限制來控制極限為0.03 / -0.09,可以用作拉伸/壓縮應力的即時監測工具,減少製程成本和時間,以提高機台使用效率。總而言之,通過大數據OES光譜的方法,再使用主成分分析(Principal Component Analysis, PCA)來減少維度,靠著通過製程電漿離子監測工具,來正確地預測殘餘應力。
摘要(英) In this study, aluminum nitride (AlN) thin films were deposited on Si(100) and investigated the minimization residual stress with varying deposition condition. Pulsed DC reactive sputtering of aluminum targets was carried out in gas ratio of nitrogen (N2) and argon (Ar) plasma with N2:Ar ratios from 15:15 to 60:15 and power 400W to 1000W. According to the large scale data of in-situ Optical emission spectroscopy (OES) study, the deposited films stress states can be highly affected by the critical processing parameters of N2 flow rate and power, which is consistent with radicals of interest N2 (315nm, 336 nm), Al (394nm, 396 nm) and Ar (750nm, 811 nm) such that a classifier can be built to predict residual stress. In addition, the proposed value of residual stress (VRS) can be calculated by PC1-DEV (the standard deviation in the first principal component direction) method for accurate prediction on the stress states of deposited films, i.e. compressive stress or tensile stress, which will provide valuable information of residual stress characterization as the in-situ monitoring tool for the AlN thin films deposition process. The VRS classifier was established to differentially predict stress state as mean VRS of 0.12/-0.21 and control limits of 0.03/-0.09, which can be used as the in-situ monitoring tool for tensile/compressive stress. In summary, it is suggested a methodology based on large data OES by which principal component analysis (PCA) to reduce dimension can be used to determine residual stress characterization from a simple measurement in-situ plasma monitoring tool.
關鍵字(中) ★ 殘留應力 關鍵字(英)
論文目次 目錄
中文摘要 II
ABSTRACT IV
致謝 VI
目錄 VIII
圖目錄 XI
表目錄 XIV
第一章 緒論 1
1-1 前言 1
1-2 研究動機與目的 2
1-3 論文架構 4
第二章 材料與背景介紹 5
2-1 薄膜沉積原理 5
2-2 物理氣相沉積(PVD) 7
2-3 薄膜殘留應力種類與成因 10
2-4 脈衝頻率簡介 13
2-5 電漿簡介 16
2-6 光放射光譜(OES) 21
2-7 機器學習主成分分析(PCA) 22
第三章 研究方法 25
3-1 實驗流程 25
3-2 實驗方法 28
3-2-1 參數設定 28
3-2-2 試片清洗步驟 29
3-2-3 試片製作 30
3-2-4 實驗步驟 30
3-3 實驗裝置與量測 32
3-3-1 雙極脈衝直流反應式濺鍍(Pulsed DC reactive sputtering) 32
3-3-2 光放射光譜 (Optical Emission Spectroscopy,OES) 34
3-3-3 表面輪廓儀 (Alpha–Step) 37
3-3-4 傅立葉轉換紅外光譜(Fourier transform infrared spectroscopy,FTIR) 38
3-3-5 X-射線繞射分析(X-ray diffraction, XRD) 39
3-3-6 X光繞射法量測薄膜殘留應力 41
第四章 實驗結果與討論 44
4-1 不同濺鍍參數對薄膜結構之影響 44
4-2 氮化鋁薄膜品質分析 49
4-2-1傅立葉轉換紅外光譜(FTIR)對氮化鋁薄膜分析 49
4-2-2 X-射線繞射分析(XRD)對氮化鋁薄膜分析 52
4-2-3 應用XRD對薄膜殘留應力的影響 54
4-3 大量光放射光譜資料結合機器學習預測殘留應力與驗證 56
第五章 結論 64
參考文獻 65
參考文獻 參考文獻
[1] Zywitzki O and Hoetzsch G 1996 Surf. Coat. Technol. 86-87 640-647.
[2] Jones K et al. 1998 Appl. Phys. Lett. 83 8010-8015
[3] Vacandio F et al. 2001 Electrochim. Acta 46 3827-3834
[4] Wang X, Yoshikawa A 2004 Prog. Cryst. Growth Charact. Mater. 48-49 42-103
[5] Jergel M, Snchez O and Albella J 2004 Surf. Coat. Technol. 180-181 140-144
[6] Mahmood A et al. 2003 Diam Relat Mater 12 1315-1321
[7] Altun H and Sen S 2005 Surf. Coat. Technol. 197 193-200
[8] Vissutipitukul P and Aizawa T 2005 Wear 259 482-489
[9] Yao S and Kao W 2006 Tribol Int 39 332-341
[10] Sproul W et al. 1998 Vacuum 51 641-646
[11] Oliveira I C, Grigorov K G, Maciel H S, Massi M and Otani C 2004 Vacuum 75 331-338
[12] Zhang J X et al. 2005 Surf. Coat. Technol. 198 68-73
[13] Guo Q X, Yoshitugu M, Tanaka T and Ogawa H 2005 Thin Solid Films 483 16-20
[14] Quirk M and Serda J 2001 Trans. Semicond. Manuf. 9 081001
[15] Stranski J N and Krastanov L 1938 Ber. Akad. Wiss. Wien. 146 797-1938.
[16] 莊達人,VLSI 製造技術,高立圖書有限公司,1996年。
[17] Schiller S et al. 1993 Surf. Coat. Technol. 61 331-337
[18] Kelly P J and Arnell R D 1999 Vacuum 17 945–953
[19] Bradley J W, Bcker H, Aranda Y and Arnell R D 2002 Plasma Sources Sci. Technol. 11 165-174
[20] Miyagi T et al. 2013 Thin Solid Films 442 32–25
[21] Benegra M et al. 2006 Thin Solid Films 494 146-150
[22] Koski K and Juliet P 1999 Surf. Coat. Technol. 116-119 716–720
[23] Bruer G, Ruske M and Teschner G 1998 Vacuum 51 655–659
[24] Sellers J et al. 1998 Surf. Coat. Technol. 98 1245–1250
[25] Oettel H and Wiedemann R 1995 Surf. Coat. Technol. 6 273–278
[26] Knotek O, Elsing R and Jungblut F 1991 Surf. Coat. Technol. 46 265–274
[27] Watari K, Hotta Y, Mitsuishi K and Yamazaki M 2006 J. Eur. Ceram. Soc. 26 385–390
[28] Belkind A. et al. 2005 New J. Phys. 7 90
[29] Okano H, Takahashi Y, Tanaka T and Nakano S 1992 Jpn. J. Appl. Phys.31 3446-3451
[30] Ishihara M and Yamamoto K 2001 Jpn. J. Appl. Phys. 40 2413–2416
[31] Chapman, B., Glow Discharge Processes, John Wiley & Sons lnc, 1980.
[32] 羅正忠,半導體製程技術導論,歐亞出版社,2006 年。
[33] Hutchinson I et al. Principles of Plasma Diagnostics 2nd, Cambridge University Press, 2002.
[34] Chodun R, Nowakowska K and Zdunek K 2015 Materials Science-Poland 33 894–901
[35] Acosta J, Rojo A, Salas O and Oseguera J 2007 Surf. Coat. Technol. 201 7992–7999
[36] Pearson K. et al. 1901 On lines and planes of closest fit to systems of points in space. The London, Edinburgh, and Dublin Philosophical Magazine and Journal of Science 2 559–572.
[37] Hotelling H. et al. 1993 Analysis of a complex of statistical variables into principal components. Journal of Educational Psychology 24, 417–441.
[38] J. Hogenboom and L. Barina, "Principal component analysis and sidechannel attacks-master thesis;′ Master′s thesis, 2010.
[39] Sanginésa R, Abundiz-Cisnerosa N, Utrera H O, Diliegros-Godinesb C and Machorro M R 2018 J. Phys. D 51 9
[40] Maa D L, Liua H Y, Denga Q Y, Yangb W M, Silinsc K, Huanga N, Lenga Y X 2019 Vacuum 160 410–417
[41] Barshilia H C, Deepthi B, Rajam K S 2008 Thin Solid Films 516 4168–4174
[42] Chodun R and Zdunek K 2015 Mater. Sci. Pol. 33 894-901
[43] Welzel, U., J. Ligot, P. Lamparter, A. C. Vermeulen, E. J. Mittemeijer, “Stress analysis of polycrystalline thin films and surface regions by X-ray diffraction”, Journal of Applied Crystallography, 38, 1-29, 2004.
[44] Cullity, B. D., S. R. Stock, Elements of X-Ray Diffraction, Prentice Hall, 2001.
[45] Birkholz, M. et al. Thin Film Analysis by X-Ray Scattering, Wiley, 2006.
[46] Akhilesh P, Shankar D, Sandeep D and Davinder K 2016 Mater Sci Semicond Process 52 16-23
[47] Ibrahim A and Newaz G 2009 Thin Solid Films 517 4372–4378
[48] Chang C T, Yang Y C , Lee J W and Lou B S 2014 Thin Solid Films 572 161-168
[49] Jiao X Q , Shi Y , Zhong H, Zhang R and Yang J 2014 J. Mater Sci.: Mater. Electron. 26 801–808
[50] Chodun R, Zdunek K 2015 Mater. Sci. Pol. 33 894-901
[51] Chang C T, Yang Y C , Lee J W and Lou B S 2014 Thin Solid Films 572 161-168
[52] Choudhary R K, Mishra P, Biswas A and Bidaye A C 2013 Mater. Sci. Eng. C 759-462
[53] Jin H , Zhou J, Dong S R, Feng B, Luo J K, Wang D M , Milne W I and Yange C Y 2012 Thin Solid Films 520 4863-4870
[54] Cheng H, Sun Y, Hing P 2003 Thin Solid Films 434 112–120
[55] Wang C C, Lu C J, Shiao M H and Shieu F S 2005 J. Vac. Sci. Technol. B 23 621
[56] Chenga H, Sunb Y, Zhangb J X, Zhangc Y B, Yuanb S and Hing P 2003 J. Cryst. Growth 254 46–54
[57] Wang C C, Chiu M C, Shiao M H and Shieua F S 2004 J. Electrochem. Soc. 151 F252-F256
[58] Lu Y F, Ren Z M, Chong T C, Cheong B A, Chow S K, and Wang J P 2000 J. Appl. Phys. 87 1540
[59] Zhanga J X, Chenga H, Chena Y Z, Uddina A, Yuana S, Gengb S J, Zhang S 2005 Surf. Coat. Technol. 198 68–73
[60] Molleja J G, Gómez B J, Ferrón J, Gautron1 Eric and et al. 2013 Eur. Phys. J. Appl. Phys. 64 20302
[61] Mirpuri C, Xu S,Long J D and Ostrikov K 2007 Jpn. J. Appl. Pys. 101 024-312
[62] Xua X H, Wua H S, Zhanga C J and Jin Z H 2001 Thin Solid Films 388 62-67
[63] Cherng J S, Chang D S 2010 Vacuum 84 653–656
[64] Chiu K H, Chen J H, Chen H R and Huang R S 2007 Thin Solid Films 515 4819–4825
[65] Knisely K E , Hunt B, Troelsen B, Douglas E, Griffin B A and Stevens J E 2018 J. Micromech. Microeng. 28 115-009
[66] Liu H Y, Tang G S 2013 J. Cryst. Growth 363 80–85
[67] Aveyarda J, Bradley J W, McKaya K, Fiona McBrideb, Donaghya D, Ravalb R and Raechelle A. D’Sa 2017 J. Mater. Chem. 5 2500-2510
[68] Lee H C, Lee J Y 1997 J. Mater. Sci. Mater. Electron. 8 385-390
[69] Leea H C, Leea J Y, Ahn H J 1994 Thin Solid Films 251 136- 140
[70] Barshilia H C, Deepthi B, Rajam K S 2008 Thin Solid Films 516 4168–4174
[71] Huang H J, Kau1 L H, Wang S H, Hsieh Y L, Lee C C, Fuh Y K and Li T T 2019 Int. J. Adv. Manuf. Technol 101 329–337
[72] Jia X, Jin C, Buzza M, Wang W and Lee J 2016 Renew. Energ. 99 1191–1201
[73] Wang S H, Chang H E, Lee C C, Fuh Y K and Li T T 2020 Mater. Chem. Phys. 240 122186
指導教授 傅尹坤(Yiin-Kuen Fuh) 審核日期 2020-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明