博碩士論文 107622007 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:18 、訪客IP:52.14.126.74
姓名 李健瑀(Jian-Yu Li)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 台灣恆春半島中新世樂水砂岩之沉積環境與沉積作用研究
(A study on the depositional environment and depositional processes of the Miocene Loshui Sandstone, Hengchun Peninsula, Taiwan)
相關論文
★ 台灣西南部中新世井下地層之沉積環境與層序地層研究★ 台灣西南海域含天然氣水合物地層之構造架構與沈積特徵
★ 台灣西南外海之構造與地形特徵及澎湖海底峽谷演化★ 台灣海峽及台灣西部平原之沈積層速度構造
★ 台灣西南外海碰撞帶前緣的近代沉積作用與新構造運動★ 台灣中部早期前陸盆地的地層紀錄
★ 台灣西南部前陸地區演育與古應力分析★ 台灣西北部漸新世至更新世盆地演化及層序地層
★ 煤岩材料與沉積環境綜合研判★ 二氧化碳地質封存潛能評估與封存場址選擇:以桃園台地為例
★ 臺灣西北部中新世-更新世沉積岩中黏土礦物和成岩作用研究★ 台灣西北部大漢溪剖面南莊層至楊梅層之沉積環境研究
★ 台灣東北外海沖繩海槽及龜山島附近之海床沉積物特徵★ 台灣西南外海高屏峽谷沉積物及沉積機制研究
★ 台灣西南海域天然氣水合物地質控制因素與資源量評估★ 台灣中部地區潛在二氧化碳封存層與蓋層之礦物組成分析及地體構造意義
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究針對恆春半島東側,沿佳樂水至九棚海岸出露之中新世樂水砂岩,建立總厚度約1,500公尺的詳細地層柱,進行岩相與古沉積環境分析。由岩相組合與重力流事件層堆積,可瞭解沉積樂水砂岩深海扇之重力流流動機制及沉積作用,及古沉積環境演育。
本研究共分類出17種岩相,包含7種濁流岩相、8種混合事件層岩相、1種雜亂堆積岩相及1種泥岩相。再透過馬可夫鏈統計分析及卡方檢定,進一步分析出各岩相的變異相。在15種事件層岩相當中,濁流岩岩相比例佔93.6%,遠高於混合事件層岩相比例 (6.4%)。並佐以幾種常見岩相 (如:中厚混合事件層,頂部含岩屑流層) 的沉積機制,指示出古沉積環境位於深海扇近端。
由事件層連續變化,可再進一步劃分出9種岩相組合,各自代表不同地形單元,分別由距沉積物供應源頭最近的海底峽谷至深海扇過渡帶,分布至較遠的近端中部深海扇及近端離軸深海扇。透過事件層厚度及岩相組合連續變化,顯現三次向上增厚再減薄的長週期循環,解釋為三次深海扇進積再退積的循環,並且堆積了三期代表距沉積物供應源頭最近的巨厚型事件層岩相。
樂水砂岩深海扇堆積於被動大陸邊緣之海底平原,卻能形成厚度至少達1,500公尺厚,並以厚層事件層為主的濁流岩層序。如此巨厚的濁流岩層序,暗示在沉積同時期,盆地納積空間持續增加。前人研究已指出晚期中新世時期 (即為樂水砂岩堆積時期) 外大陸邊緣產生張裂活動,本研究推測樂水砂岩乃堆積於大陸斜坡坡底的張裂盆地中。另外,由樂水砂岩所量得之古水流流向為由南往北,顯示為南高北低的古海床地形變化。此地形變化不同於古地理所顯示的由西北往東南變深的大陸斜坡趨勢。本研究認為樂水砂岩深海扇的局部地形變化可能受控於此張裂盆地邊界正斷層的位態。
摘要(英) The Loshui Sandstone, a Miocene turbidite succession with a nominal thickness in 1,500 m, is exposed in the eastern Hengchun Peninsula, Taiwan. We conduct lithofacies and facies association analysis to understand the mechanisms, depositional processes and paleo-environmental evolutions of the event-bed succession.
The Markov chain stochastic analysis and Chi-squared test have been performed both to analyze the sequential development of sedimentary structures and lithofacies. Seventeen lithofacies with specific thickness, lithology and internal structure are identified. These lithofacies include seven turbidite facies, eight hybrid event-bed facies, one chaotic slumped-bed facies and one hemipelagic mud facies. Within fifteen event-bed facies, turbidite facies (93.6%) is the major facies type comparing to hybrid event-bed facies (6.4%). The paleoenvironment is interpreted as proximal submarine lobes of a deep-sea fan as judged from flow mechanisms of dominant lithofacies.
Nine facies associations, corresponding to various morphological units, ranging from canyon-fan transition to proximal mid-fan lobe and proximal off-axis lobe. Continuous vertical variations of event-bed thickness and facies association show three long-term cycles of thickening then thinning upward trends, denoting three cycles of progradation and retrogradation.
The interpreted submarine fan located at the base of continental slope of a passive continental margin. The vertically aggrading turbidite succession is dominated by thickly-bedded event beds, amounting to 1,500 m in thickness. This indicates that the rate of basin subsidence is keeping pace with the rate of sediment supply. We interpret that the late Miocene Loshui Sandstone is accumulated in a rifted basin along the base of continental slope in a passive continental margin. Furthermore, the northward-directed paleocurrents as measured from the Loshui Sandstone demonstrate that the depositional trough of the Loshui submarine fan deepens toward the north. This northward deepening trend is contradicted to the regional physiographical feature of the continental slope, which exhibits deepening toward the southeast. We interpret this local topographic variation for the Loshui submarine fan may be constrained by the attitude of the border fault that forms the rift basin.
關鍵字(中) ★ 恆春半島
★ 濁流岩
★ 馬可夫鏈統計分析
★ 岩相
★ 岩相組合
關鍵字(英)
論文目次 中文摘要 ................................................................................. i
英文摘要 ................................................................................. iii
誌 謝 .................................................................................. v
目 錄 ................................................................................. vi
圖 目 錄 ............................................................................... ix
表 目 錄 ............................................................................... xiii
第一章 緒論 ......................................................................... 1
1.1 前言 ........................................................................................ 1
1.2 地質背景 ................................................................................ 4
1.2.1 岩石地層 ..................................................................... 4
1.2.2 生物地層 ..................................................................... 6
1.2.3 古環境及古水流流向 ................................................. 7
1.2.4 地質構造 ..................................................................... 9
1.3 研究目的 ................................................................................ 10
1.4 研究方法 ................................................................................ 10
1.5 區域地質 ................................................................................ 11
第二章 深海濁流岩及事件層岩相研究回顧 .................... 18
鮑馬序列 ............................................................................... 21
洛韋序列 ............................................................................... 21
穆提的九個岩相 ................................................................... 21
皮克玲等人的七類岩相 ....................................................... 22
混合事件層 ........................................................................... 25
第三章 岩相分析 ................................................................. 26
3.1 事件層厚度分類 ................................................................... 26
3.2 馬可夫鏈統計分析 ................................................................. 28
3.3 卡方檢定 ................................................................................ 47
3.4 岩相分析結果 ........................................................................ 53
第四章 沉積環境演變 ....................................................... 102
4.1 岩相組合 .............................................................................. 102
4.2 馬可夫鏈統計分析及卡方檢定 .......................................... 129
4.2.1 馬可夫鏈統計分析 ................................................... 129
4.2.2 卡方檢定 ................................................................... 132
4.3 厚度變化 .............................................................................. 133
4.4 岩相組合演變,以鹿寮溪露頭為例 .................................. 134
4.4.1 記錄方法 ................................................................... 134
4.4.2 分析結果 ................................................................... 137
4.5 古水流模式 .......................................................................... 141
第五章 討論 ....................................................................... 144
5.1 馬可夫鏈統計分析結果 ...................................................... 144
5.2 岩相分布 .............................................................................. 145
5.2.1 岩相個數比例 ........................................................... 145
5.2.2 岩相厚度比例 ........................................................... 149
5.3 岩相組合分布 ...................................................................... 152
5.4 特殊岩相及其意義 ............................................................. 156
5.4.1 非典型事件層岩相 .................................................. 156
5.4.2 銳頂岩相 ................................................................... 158
5.4.3 混合事件層 .............................................................. 159
5.5 古沉積環境 .......................................................................... 160
5.5.1 地體架構 ................................................................... 160
5.5.2 沉積體系及環境演化 .............................................. 165
5.6 恆春半島中新世地層 ......................................................... 167
第六章 結論 ....................................................................... 169
參考文獻 ............................................................................... 170
附錄 ....................................................................................... 183
A. 圖版 ............................................................................... 184
B. 厚度變化 ....................................................................... 202
C. 地層柱狀圖 ................................................................... 215
參考文獻 中文參考文獻
六角兵吉、牧山鶴彥 (1934) 高雄州恆春油田調查報告及地質圖(三萬分之一)。台灣總督府殖產局出版第660號,共43頁。
中國石油公司 (1992) 1:100,000地質圖幅第七幅,高雄-屏東地區。中國石油公司台灣油礦探勘總處。
石崎和彥 (1942) 西恆春台地附近地質學的觀察。台灣地學紀事,13卷,2-3號,46-64頁。
吳樂群與陳華玟 (1990) 台灣南部恆春西台地北段晚更新世地層之沉積層序。經濟部中央地質調查所研究所碩士論文,共124頁。
宋國城 (1987) 恆春半島晚新第三紀地層及其古沉積環境之研究。國立台灣大學地質研究所博士論文,共190頁。
宋國城 (1991) 恆春半島圖幅與說明書,五萬分之一台灣地質圖第69、70及72號。經濟部中央地質調查所,共77頁。
張敏 (1985) 台灣南部恆春半島新第三系之生物第層。國立台灣大學地質研究所碩士論文,共66頁。
陳文山 (1985) 台灣南部恆春半島之地質。國立台灣大學地質研究所碩士論文,共106頁。
陳文山與李偉彰 (1990) 西恆春臺地地層之檢討。地質,10卷,2期,127-140頁。
陳文山、李偉彰、黃能偉、顏一勤、楊志成、楊小青、陳勇全、宋時驊 (2005) 恆春半島增積岩體的構造與地層特性:全新世恆春斷層的活動性。西太平洋地質科學,5卷,129-154頁。
詹新甫 (1974) 恆春半島之地層與構造並申論中新世傾瀉層。台灣省地質調查所彙刊,24號,99-108頁。
英文參考文獻
Allen J.R.L. (1973) A classification of climbing-ripple crosslamination; J. Geol. Soc. London 129 537–541.
Ashley, G.M. (1990) Classification of large-scale subaqueous bedforms: a new look at an old problem. Journal of Sedimentary Research 60, 161–172
Baas, J.H., Best, J.L. and Peakall, J. (2011) Depositional processes, bedform development and hybrid bed formation in rapidly decelerated cohesive (mud-sand) sediment flows. Sedimentology, 58, 1953–1987
Banerjee, I. (1979) Quantitative analysis of stratigraphic sequences. Jour. Min. and Geol., 16, (2): p.111- 118.
Bayet-Goll, A., Neto de Carvalho, C., Moussavi-Harami, R., Mahboubi, A., Nasiri, Y., (2014) Depositional environments and ichnology of the deep-marine succession of the Amiran Formation (upper Maastrichtian- Paleocene), Lurestan Province,Zagros Fold-thrust belt, Iran. Palaeogeo. Palaeoclimatol. Palaeoecol. 401, 13e42.
Bouma, A.H. (1962) Sedimentology of Some Flysch Deposits: A Graphic Approach to Facies Interpretation. Elsevier, Amsterdam, 168 pp.
Boggs, S.J. (2001) Principles of Sedimentology and Stratigraphy, 5th Edition, Figure 2.6, P.33.
Briais, A., Patriat, P., Tapponnier, P., (1993) Updated interpretation of magnetic anomalies and seafloor spreading stages in the South China Sea: implications for the Tertiary tectonics of Southeast Asia. J. Geophys. Res. 98, 6299–6328.
Brooks, H. L., Hodgson, D. M., Brunt, R. L., Peakall, J., Poyatos-Moré, M., and Flint, S. S.: Disconnected submarine lobes as a record of stepped slope evolution over multiple sea-level cycles, Geosphere, 14, 1753–1779.
Brunt, R.L., Hodgson, D.M., Flint, S.S., Pringle, J.K., Di Celma, C., Prelat, A., Grecula, M., (2013) Confined to unconfined: anatomy of a base of slope succession, Karoo Basin, South Africa. Mar. Petroleum Geol. 41, 206-221.
Campion, K.M., Sprague, A.R.G., Sullivan, M.D., (2005) Architecture and Lithofacies of the Capistrano Formation (Miocene-pliocene). The Pacific Section SEPM, San Clemente, California, p. 42.
Chang, L.S. (1964) A biostratigraphic study of the Tertiary in the Hengchun Peninsula, Taiwan, based on smaller foraminifera (I. Northern part). Proc. Geo. Soc. China, 7, 48-62.
Chang, L.S. (1965) A biostratigraphic study of the Tertiary in the Hengchun Peninsula, Taiwan, based on smaller foraminifera (II. Middle part). Proc. Geo. Soc. China, 8, 9-18.
Chang, L.S. (1966) A biostratigraphic study of the Tertiary in the Hengchun Peninsula, Taiwan, based on smaller foraminifera (III. Southern part). Proc. Geo. Soc. China, 9, 55-63.
Chang, C.-P., Angelier, J., Lee, T.-Q. and Huang, C.-Y., (2003) From continental margin extension to collision orogen: structural development and tectonic rotation of the Hengchun peninsula, southern Taiwan. Tectonophysics, 361, 61-82.
Cheng, Y.M. and Huang, C.Y. (1975) Biostratigraphic study in the West Hengchun Hill. Acta Geol. Taiwanica, 18, 49-59.
Cheng, Y.M., Huang, C.Y., Yen, J.J., (1984) The Loshui formation: Deeper-water sandstones on the Hengchun Peninsula, Southern Taiwan. Acta Geol. Taiwanica 22, 100-117.
Chuang, C.W., Lin, C.Y., Chien, C.H., Chou, W.C. (2011) Application of Markov-chain model for vegetation restoration assessment at landslide areas caused by a catastrophic earthquake in Central Taiwan. Ecological Modelling 222, 835–845.
Davis, C., Haughton, P., McCaffrey, W., Scott, E., Hogg, N., Kitching, D., (2009) Character and distribution of hybrid sediment gravity flow deposits from the outer Forties Fan, Palaeocene Central North Sea. UKCS. Marine and Petroleum Geology 26, 1919–1939.
FONNESU, M., FELLETTI, F., HAUGHTON, P.D., PATACCI,M.,AND MCCAFFREY, W.D., 2018,
Hybrid event bed character and distribution linked to turbidite system sub-environments:
the North Apennine Gottero Sandstone (north-west Italy): Sedimentology, v. 65, p. 151–
190
FONNESU, M., FELLETTI, F., HAUGHTON, P.D., PATACCI,M.,AND MCCAFFREY, W.D., 2018,
Hybrid event bed character and distribution linked to turbidite system sub-environments:
the North Apennine Gottero Sandstone (north-west Italy): Sedimentology, v. 65, p. 151–
190
FONNESU, M., FELLETTI, F., HAUGHTON, P.D., PATACCI,M.,AND MCCAFFREY, W.D., 2018,
Hybrid event bed character and distribution linked to turbidite system sub-environments:
the North Apennine Gottero Sandstone (north-west Italy): Sedimentology, v. 65, p. 151–
190
Elliot, T.R., (2000) Depositional architecture of a sand-rich, channelized turbidite system: the upper carboniferous Ross Sandstone Formation, western Ireland. In: Gulf Coast Section SEPM Annual Research Conference, Deep-water Reservoirs of the World, pp. 342–373.
Fonnesu, M., Haughton, P., Felletti, F. and McCaffrey, W.D. (2015) Short length-scale variability of hybrid event beds and its applied significance. Mar. Petrol. Geol., 67, 583–603.
Fonnesu, M., Felletti, F., Haughton, P.D., Patacci, M., and Mccaffrey, W.D., (2018) Hybrid event bed character and distribution linked to turbidite system sub-environments: the North Apennine Gottero Sandstone (north-west Italy): Sedimentology, v. 65, p. 151–190
Garland, C.R., Haughton, P.D.W., King, R.F., Moulds, T.P., (1999) Capturing reservoir heterogeneity in a small, sand-rich submarine fan, Miller field. In: Fleet, A.J., Boldy, S.A.R. (Eds.), Petroleum Geology of NW Europe: Proceedings of the 5th Conference, pp. 1199–1208.
Ghibaudo, G. (1992) Subaqueous sediment gravity flow deposits: practical criteria for their field description and classification. Sedimentology 39, 423–454.
Giletycz S.J., A.T.S. Lin, C.P. Chang, J.B.H. Shyu (2019) Relicts of mud diapirism of the emerged wedge-top as an indicator of gas hydrates destabilization in the Manila accretionary prism in southern Taiwan (Hengchun Peninsula) Geomorphology, 336 (2019), pp. 1-17.
Haq, B.U., Hardenbol, J., Vail, P.R. (1987) Chronology fluctuating sea levels since the Triassic. Science 235, 1156–1167. http://dx.doi.org/10.1126/science.235. 4793.1156.
Haughton, P.D.W., Barker, S.P. and McCaffrey, W.D. (2003)
‘Linked’ debrites in sand-rich turbidite systems – origin and
significance. Sedimentology, 50, 459–482
Haughton, P.D.W., Barker, S.P. and McCaffrey, W.D. (2003)
‘Linked’ debrites in sand-rich turbidite systems – origin and
significance. Sedimentology, 50, 459–482
Haughton, P.D.W., Barker, S.P. and McCaffrey, W.D. (2003)
‘Linked’ debrites in sand-rich turbidite systems – origin and
significance. Sedimentology, 50, 459–482.
Haughton, P.D.W., Barker, S.P. and McCaffrey, W.D. (2003) ‘Linked’ debrites in sand-rich turbidite systems – origin and significance. Sedimentology, 50, 459–482.
Haughton, P.D.W., Davis, C., McCaffrey, W. and Barker, S. (2009) Hybrid sediment gravity flow deposits – classification, origin and significance. Mar. Petrol. Geol., 26, 1900–1918.
Henstra, G. A., Grundvåg, S.-A., Johannessen, E. P., Kristensen, T. B., Midtkandal, I., Nystuen, J. P. (2016) Depositional processes andstratigraphic architecture within a coarse-grained rift-margin turbidite system: The Wollaston Forland Group, East Greenland. Marine andPetroleum Geology, 76 , 187–209
Hesse, R., Klaucke, I., Khodabakhsh, S., Piper, D.J.W., Ryan, W.B.F., NAMOC Study Group, (2001) Sandy submarine braid plains: Potential deep-water reservoirs. AAPG Bull. 85, 1499-1521.
Huang, C.Y., (1984) Field Trip Guide to the Hengchun Peninsula, Southern Taiwan. Sino-French Colloquium on Geodynamics of the Eurasian - Philippine Sea Plate Boundary, April 26-30, pp. 77-94.
Huang, C.Y., Xia, K., Yuan, P.B., Chen, P.G. (2001) Structural evolution from Paleogene extension to Latest Miocene-Recent arc-content collision offshore Taiwan: comparison with on land geology. J. Asian Earth Sci., 19, 619-639.
Hubbard, S.M., Covault, J.A., Fildani, A., Romans, B.W., (2014) Sediment transfer and deposition in slope channels: deciphering the record of enigmatic deep-sea processes from outcrop. GSA Bull. 126, 857-871.
Kane, I.A., and Pontén, A.S.M. (2012) Submarine transitional flow deposits in the Paleogene Gulf of Mexico: Geology, v. 40, p. 1119–1122.
Kneller, B.C. and Branney, M.J. (1995) Sustained high-density turbidity currents and the deposition of thick massive sands. Sedimentology, 42, 607–616.
Kneller, B.C., Bennett, S.J. and McCaffrey, W.D. (1997)
Velocity and turbulence structure of gravity currents and
internal solitary waves: potential sediment transport and
the formation of wave ripples in deep water. Sediment.
Geol., 112, 235±250
Kneller, B.C., Bennett, S.J. and McCaffrey, W.D. (1997) Velocity and turbulence structure of gravity currents andinternal solitary waves: potential sediment transport andthe formation of wave ripples in deep water. Sediment.Geol., 112, 235-250.
Li, C.F., Xu, X., Lin, J., Sun, Z., Zhu, J., Yao, Y.J., Zhao, X.X., Liu, Q.S., Kulhanek, D.K., Wang, J., Song, T.R., Zhao, J.F., Qiu, N., Guan, Y.X., Zhou, Z.Y., Williams, T., Bao, R., Briais, A., Brown, E.A., Chen, Y.F., Clift, P.D., Colwell, F.S., Dadd, K.A., Ding, W.W., Almeida, I.H., Huang, X.L., Hyun, S.M., Jiang, T., Koppers, A.A.P., Li, Q.Y., Liu, C.L., Liu, Z.F., Nagai, R.H., Peleo-Alampay, A., Su, X., Tejada, M.L.G., Trinh, H.S., Yeh, Y. C., Zhang, C.L., Zhang, F., Zhang, G.L., (2014) Ages and magnetic structures of the South China Sea constrained by deep tow magnetic surveys and IODP Expedition 349. Geochem. Geophys. Geosyst. 15, 4958–4983.
Lin, A. T., and A. B. Watts (2002) Origin of the West Taiwan basin by orogenic loading and flexure of a rifted continental margin, J. Geophys. Res., 107(B9), 2185, doi:10.1029/2001JB000669.
Lin, A.T., Watts, A.B., Hesselbo, S.P. (2003) Cenozoic stratigraphy and subsidence historyof the South China Sea margin in the Taiwan region. Basin Res;15(4):453–478.
Lowe, D.R. (1982) Sediment gravity flows: II depositional models with special reference to the deposits of high-density turbidity currents. J. Sed. Petrol., 52, 279–297.
Marchand, A.M.E., Apps, G., Li, W., Rotzien, J.R., (2015) Depositional processes and impact on reservoir quality in deepwater Paleogene reservoirs, US Gulf of Mexico. AAPG Bull. 99 (9), 1635-1648.
Martinsen, O.J., Lien, T., Walker, R.G., (2000) Upper Carboniferous deep water sediments, western Ireland: analogues for passive margin turbidite plays. In: Gulf Coast Section SEPM Annual Research Conference, Deep-water Reservoirs of the World, pp. 533–555.
McHargue, T., Pyrcz, M.J., Sullivan, M.D., Clark, J., Fildani, A., Romans, B.R., Covault, J.A., Levy, M., Posamentier, H., Drinkwater, N., (2011) Architecture of turbidite channel systems on the continental slope: patterns and predictions. Mar. Petroleum Geol. 28, 728-743.
Miall, A. D. (1973) Markov Chain analysis applied to an ancient alluvial plain succession. Sedimentology, 20, p. 347 – 361.
Middleton, G.V. and Hampton, M.A. (1976) Subaqueous sediment transport and deposition by sediment gravity flow: In Stanley, D.J. and Swift, D.J.P. (eds): Marine Sediment transport and environmental management, p.197-217.
Miller K.G., Browning J. V., Schmelz W. J., Kopp R. E., Mountain G. S., Wright J. D. (2020) Cenozoic sea-level and cryospheric evolution from deep-sea geochemical and continental margin records. Sci. Adv. 6, eaaz1346.
Mutti, E. and Johns, D.R. (1978) The role of sedimentary bypassing in the genesis of fan fringe and basin plain turbidites in the Hecho Group System (south-central Pyrenees). Mem. della Soc. Geol. Ital., 18, 15–22.
Muller, C., Pelletier, B., Schaaf, A., Glacon, G. and Huang, T.C. (1984) Age determination of the ophiolitic materials from the Hengchun Peninsula (south Taiwan) and their tectonic implication: Mem. Geol. Soc. China, 6, 327-334.
Mueller, P., Patacci, M., & Di Giulio, A. (2017). Hybrid event beds in the proximal to distal extensive lobe domain of the coarse‐grained and sand‐rich Bordighera turbidite system (NW Italy). Marine and Petroleum Geology, 86, 908–931. https://doi.org/10.1016/j. marpetgeo. 2017.06.047.
Mutti, E. (1992) Turbidite Sandstones. Agip S.p.A, Italy, 275 pp.
Mutti, E. and Ricci Lucchi, F. (1972) Le torbiditi dell’Appennino settentrionale: introduzione all’analisi di facies. Soc. Geol. Ital. Mem., 11, 161–199.
Mutti, E., Nilsen, T.H. and Ricci Lucchi, F. (1978) Outer fan depositional lobes of the Laga Formation (upper Miocene and lower Pliocene), East-Central Italy. In: Sedimentation in Submarine Canyons, Fans, and Trenches (Eds D.J. Stanley and G. Kelling), pp. 210–222. Dowden, Hutchinson & Ross, Inc, Stroudsburg, PA.
Mutti, E., Bernoulli, D., Ricci Lucchi, F. and Tinterri, R. (2009) Turbidites and turbidity currents from Alpine ‘flysch’ to the exploration of continental margins. Sedimentology, 56, 267–318.
Okoro, A.U. and Ezeh, H.N. (2009) Finite Markov chain model in lithofacies analysis: an example from the Bida sandstone, Bida basin, Nigeria. Global Journal of Geological Science Vol. 8, No. 1, 2010: 17-23
Paciullo, F.V.P., Ribeiro, A., Trouw, R.A.J., and Passchier, C.W., (2007) Facies and facies association of the siliciclastic Brak River and carbonate Gemsbok formations in the Lower Ugab River valley, Namibia, W. Africa: Journal of African Earth Sciences, v. 47, no. 3, p. 121– 134.
Page, B.M. and Lan, C.Y. (1983) The Kenting melange and its plate tectonics and olistostromal origin. Am. J. Sci., 281, 193-27.
Pelletier, B., Stephan, J.F., Blanchet, R., Muller, C., Hu H.N. (1984) Geology of Hengchun Peninsula, Southern Taiwan: arguments for a middle obduction and for an arc-continental collision since Uper Miocene (Abs): Sino-French Seminar on Geodynamics of the Eurasian-Philippine Sea Plate Boundary, Taipei, April 20-30, 64-65.
Pelletier, B., Stephan, J.F., (1986) Middle Miocene obduction and Late Miocene Beginning of collision registered in the Hengchun peninsula: geodynamic implications for the evolution of Taiwan. Mem. Geol. Soc. China 7, 301 - 324.
Pickering, K., Stow, D., Watson, M. and Hiscott, R. (1986) Deep-water facies, processes and models: a review and classification scheme for modern and ancient sediments. Earth-Sci. Rev., 23, 75–174.
Pickering, K.T. and Hiscott, R.N. (2015) Deep Marine Systems: Processes, Deposits, Environments, Tectonics and Sedimentation. American Geophysical Union, John Wiley and Sons, Oxford, 672 pp.
Potter, P.E. and Pettijohn, E.J. (1963) Paleocurrent and basin analysis. Springer-Verlag, Berlin.
Posamentier, Henry W. & Venkatarathnan Kolla (2003) Seismic Geomorphology and stratigraphy of depositional elements in Deep-Water Settings, Journal Sedimentary Research, Vol. 73, No. 3, P. 367–388
Postma G. (1986) Classification for sediment gravity-flow deposits based on flow conditions during sedimentation. Geology 14:291–294
Prélat, A. & Hodgson, D. M. (2013) The full range of turbidite bed thickness patterns in submarine lobes: controls and implications. J. Geol. Soc. London 170, 209–214.
Reading, H.G. (1996) Sedimentary Environment: Processes, Facies and Stratigraphy, 3th edition. Department of Earth Science, University of Oxford, 688pp.
Remacha, E., Fernandez, L.P. and Maestro, E. (2005) The transition between sheet-like lobe and basin-plain turbidites in the Hecho Basin (South-Central Pyrenees, Spain). J. Sed. Res., 75, 798–819.
Romans, B.W., Hubbard, S.M., Graham, S.A., (2009) Stratigraphic evolution of an outcropping continental slope system, tres Pasos formation at cerro Divisadero, Chile. Sedimentology 56, 737e764.
Rotzien, J.R., Lowe, D.R., Schwalbach, J.R., (2014) Processes of sedimentation and stratigraphic architecture of deep-water braided lobe complexes: the Pliocene repetto and Pico formations, ventura basin, USA. J. Sediment. Res. 84 (19), 910e934.
Stevenson, C. J., Jackson, C. A., Hodgson, D. M., Hubbard, S. M. & Eggenhuisen, J. T. (2012) Deep-water sediment bypass. J. Sediment. Res. 85, 1058–1081
Stevenson, C.J., Talling, P.J., Masson, D.G., Sumner, E.J., Frenz, M., and Wynn, R.B. (2014a) The spatial and temporal distribution of grain-size breaks in turbidites: Sedimentology, v. 61, p. 1120–1156.
Stevenson, C.J., Talling, P.J., Masson, D.G., Sumner, E.J., Frenz, M., and Wynn, R.B. (2014b) On how thin submarine flows transported large volumes of sand for hundreds of kilometres across a flat basin plain without eroding the sea floor: Sedimentology, v. 61, p. 1982–2019.
Southern, S.J., Patacci, M., Felletti, F. and McCaffrey, W.D. (2015) Influence of flow containment and substrate entrainment upon sandy hybrid event beds containing a co-genetic mud-clast-rich division. Sed. Geol., 321, 105–122.
Staňová, S., Soták, J., Hudec, N. (2009) Markov chain analysis of turbiditic facies andflowdynamics (magura zone, outer western carpathians, NW Slovakia). Geol. Carpathica60, 295–305.
Stow, D.A.V. and Sanmugan, G. (1980) Sequence of structures in fine-grained turbidites: comparison of recent deep-sea and ancient flysch sediments: Sed. Geol., 25, 23-42.
Sun, Z., Zhong, Z.H., Keep, M., Zhou, D., Cai, D.S., Li, X.S., Wu, S., Jiang, J.Q., (2009) 3D analogue modeling of the South China Sea: a discussion on breakup pattern. J. Asian Earth Sci. 34, 544–556.
Talling, P.J., Amy, L.A. and Wynn, R.B. (2007b) New insights
into the evolution of large volume turbidity currents; com-
parison of turbidite shape and previous modelling results.
Sedimentology, 54, 737–769
Talling, P.J., Amy, L.A. and Wynn, R.B. (2007b) New insights
into the evolution of large volume turbidity currents; com-
parison of turbidite shape and previous modelling results.
Sedimentology, 54, 737–769
Talling, P.J., Amy, L.A. and Wynn, R.B. (2007b) New insights
into the evolution of large volume turbidity currents; com-
parison of turbidite shape and previous modelling results.
Sedimentology, 54, 737–769
Talling, P.J., Amy, L.A. and Wynn, R.B. (2007) New insights into the evolution of large volume turbidity currents; com-parison of turbidite shape and previous modelling results. Sedimentology, 54, 737–769.
Talling, P.J., Malgesini, G., Sumner, E.J., Amy, L.A., Felletti, F., Blackbourn, G., Nutt, C., Wilcox, C., Harding, I.C. and Akbari, S. (2012) Planform geometry, stacking pattern, and extrabasinal origin of low strength and intermediate strength cohesive debris flow deposits in the Marnoso-arenacea Formation, Italy. Geosphere, 8, 1207–1230.
Taylor, B., Hayes, D.E., (1980) The tectonic evolution of the South China Basin. In: Hayes, D.E. (Ed.), The Tectonic and Geologic Evolution of Southeast Asian Seas and Islands: Part 1. Geophysical Monograph Series, vol. 23. AGU, Washington, DC, pp. 89–104.
Taylor, B., Hayes, D.E., (1983) Origin and history of the South China Sea basin. In: Hayes, D.E. (Ed.), The Tectonic and Geologic Evolution of Southeast Asian Seas E. He et al. / Journal of Asian Earth Sciences 121 (2016) 139–152 151 and Islands: Part 2. Geophysical Monograph Series, vol. 27. AGU, Washington, DC, pp. 23–56.
Tinterri, R.,Muzzi Magalhaes, P.M.,Tagliaferri, A. and
Cunha, R.S. (2016) Convolute laminations and load
structures in turbidites as indicators of flow reflections
and decelerations against bounding slopes. Examples from
the Marnoso-arenacea Formation (northern Italy) and
Annot Sandstones (south eastern France). Sed. Geol.,344,
382–407.
Teng, L.S. (1990) Geotectonic evolution of late Cenozoic arc-con-tinent collision in Taiwan. Tectonophysics 183, 57–76.
Tinterri, R.,Muzzi Magalhaes, P.M.,Tagliaferri, A. andCunha, R.S. (2016) Convolute laminations and load structures in turbidites as indicators of flow reflection sand decelerations against bounding slopes. Examples from the Marnoso-arenacea Formation (northern Italy) and Annot Sandstones (south eastern France). Sed. Geol.,344,382–407.
Tripsanas, E.K., Piper, D.J.W., Jenner, K.A. and Bryant, W.R. (2008) Submarine mass-transport facies: new perspectives on flow processes from cores on the eastern North American margin. Sedimentology, 55, 97–136.
Walker R.G. and Jopling A.V. (1968) Morphology and origin of ripple-drift cross-lamination with examples from the Pleistocene of Massachusetts; J. Sediment. Petrol. 38 971–984.
Zhang, X. C., Y. Yan, C. Y. Huang, D. F. Chen, Y. H. Shan, Q. Lan, W. H. Chen, and M. M. Yu (2014) Provenance analysis of the Miocene accretionary prism of the Hengchun Peninsula, southern Taiwan, and regional geological significance, J. Asian Earth Sci., 85, 26-39.
指導教授 林殿順(Tien-Shun Lin) 審核日期 2020-7-28
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明