博碩士論文 107622002 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:98 、訪客IP:3.136.97.64
姓名 蕭惟中(Wei-Chung Hsiao)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 利用2.5 維密集式高解析電火花震測法研究高屏峽谷極上游區域的海床侵蝕作用
(Intense Seafloor Erosion derived by 2.5D Sparker Seismic Method in the uppermost Gaoping Submarine Canyon off southwestern Taiwan)
相關論文
★ 琉球隱沒帶最南段隱沒沉積物物理性質之研究★ 高屏峽谷極上游區域峽谷侵蝕與泥貫入體活動之交互關係研究
★ 基於深度學習的反射震測速度分析★ 南海北部大陸邊緣震測地層與構造演化之研究
★ 利用多頻道電火花反射震測法研究南高屏陸坡區域沉積構造與演化過程★ 琉球隱沒帶最南段由隱沒過渡至碰撞 走向滑移斷層構造研究
★ 臺南盆地自始新世以來沉積層序發育過程及構造演化歷史
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-29以後開放)
摘要(中) 海底峽谷為陸上沉積物搬運至深海的主要通道。高屏峽谷為第一種類型峽谷,其與陸上的高屏溪直接相連,高屏溪的沉積物可透過高屏峽谷直接輸送至南海海盆。前人研究結果顯示,高屏峽谷歷史上有多次濁流事件發生,峽谷內的濁流亦可能透過河道轉彎處溢流而出。高屏峽谷的極上游區域為陸源濁流源頭,過去研究認為峽谷東岸主要受侵蝕作用影響,但該侵蝕作用的三維構造與受侵蝕的地層層序無法僅透過二維測線得知。因此,本研究於小琉球北方區域進行仿三維震測,蒐集78 條密集式電火花反射震測測線,資料先經過二維處理後進行三維幾何定義並輸出製成三維立方體,進行後續震測解釋與分析。本研究劃分出八種震測地層特徵,分別為末次冰盛期前沉積 (Pre – LGM Deposition)、海進體系 (Transgressive Systems Tract;T.S.T.)、高位體系 (Highstand Systems Tract;H.S.T.)、泥貫入體 (Mud Diapir)、邊坡滑移 (Slop failure)、溢流沉積 (Overflow deposition)、峽谷底沉積 (Canyon bottom deposition)與階地 (Terrace)。綜合分析結果顯
示,本研究的研究區域近海床地層遭受強烈的侵蝕作用,主要侵蝕動力可以分為西北往東南向表面海流與峽谷溢流,由兩者導致小琉球北方U型西北往東南走向侵蝕通道,該侵蝕通道最深處相較於高屏峽谷西側地形落差將近40 公尺,且侵蝕通道中央處的高位體系沉積物被侵蝕殆盡,而海進體系沉積物亦遭受侵蝕僅剩約十公尺,遭受侵蝕或受底流所搬運的沉積層體積估算約為0.544 立方公里。另一顯著地質作用為南北走向活動泥
貫入體,該泥貫入體最北側緊鄰峽谷東岸谷壁,往南連接至小琉球基盤。受泥貫入體推擠影響,峽谷東側谷壁地層產生大規模海底崩塌並可延伸至小琉球西側。此外,峽谷溢流所堆積的砂質沉積物廣泛分佈在小琉球西方海床,侵蝕量較少。但小琉球北方侵蝕通道幾無砂質堆積物,此可能為表層海流長期侵蝕下將溢流沉積物搬運至高屏陸坡附近堆積所致。
摘要(英) The submarine canyon is the main pathway that transports terrestrial sediments down to the deep sea. As the type I canyon, the Gaoping Submarine Canyon (GPC) connects to the Gaoping River (GPR) directly which is capable for moving gravity driven flow and sediments to the northern South China Sea. The turbidity current originated from the Gaoping River mouth could destroy telecommunication cables along and across the canyon. The along canyon
sediment flows may also overflow through canyon breakage and meandering segments from the uppermost of the canyon to downstream of the canyon. As the origin of the turbidity current, the near seafloor fine sedimentary structures and dynamics are rarely studied in the uppermost GPC. Although a previous sparker seismic study shows an eastern bank of the uppermost GPC is erosional, three-dimensional sediment structures and erosional volume are still unknown. In this study, we applied a 2.5-dimensional sparker seismic exploration method that collected 75 sixty meters interval in-line across uppermost GPC and 3 cross-line parallel to the eastern
Gaoping Slope. The data processing was gone through 2D and 3D processings. The 2D processing steps are as followed: trace editing, 2D geometry settings, band-pass filters, stack, swell correction, shaping filter, predictive deconvolution. After 2D processing, the data was performed in 3D geometry settings, 3D stack, and 3D F-X decon then output a final 3D cube.
The seismic characteristics analysis shows that there are eight significant sedimentary sequences and features amongst the study area: Pre-Last Glacial Maximum Sequence (Pre- LGM), Transgressive Systems Tract (T.S.T.), Highstand Systems Tract (H.S.T.), Mud Diapirism, Slope failures, Overflow depositions, Canyon bottom depositions, and Terrace. There is a U-shape channel in the north of Xiaoliuchiu islet that is caused by a strong NW-SE current erosion. In the middle of the channel, the H.S.T. section was gone and only ~10 meters thick T.S.T. was left with respect to the west of the uppermost GPC. There are about 0.544 km3 volume sediments were removed. The east bank of the uppermost GPC is suffered by N-S active mud diapir and triggered severe slope failures in the east bank of the uppermost GPC. In III addition, there are about 5-10 meters thick sandy overbank sediments deposited widely in the west of Xiaoliuchiu islet but only very thin one can be found to the U-shaped channel. This indicates most overbank sediments in the U-shaped channel was removed by NW-SE current. Those eroded sediments are probably deposited along east Gaoping Slope.
關鍵字(中) ★ 高屏峽谷
★ 海床侵蝕
★ 邊坡滑移
★ 2.5維電火花反射震測法
關鍵字(英) ★ Gaoping Canyon
★ Seafloor Erosion
★ Slope Failure
★ 2.5 D Sparker Seismic Method
論文目次 中文摘要............................................. I
Abstract ........................................... II
誌謝 ................................................ IV
目錄 ................................................ V
圖目錄 .............................................. VII
表目錄 .............................................. XI
第一章 緒論 .......................................... 1
1.1 海底峽谷沉積物來源與活動 ........................... 1
1.2 高屏海底峽谷 ..................................... 2
1.3 高屏峽谷流域沉積物動力 ............................ 3
1.4 研究動機與目的 ................................... 4
第二章 研究方法 ..................................... 22
2.1 電火花反射震測系統介紹 ........................... 22
2.2 電火花反射震測幾何定義與施測參數 .................. 22
2.3 震測資料處理流程 ................................ 23
第三章 震測剖面與解釋 ............................... 44
3.1 二維震測剖面解釋 ................................ 44
3.1.1 測線Line CR01 (圖3-4、圖3-5) ................. 44
3.1.2 測線Line CR02 (圖3-6、圖3-7) ................. 46
3.1.3 測線Line CR03 (圖3-8、圖3-9) ................. 48
3.1.4 測線Line 03 (圖3-10、圖3-11) ................. 49
3.1.5 測線Line 06 (圖3-12、圖3-13) .................. 51
3.1.6 測線Line 09 (圖3-14、圖3-15) .................. 51
3.1.7 測線Line 11 (圖3-16、圖3-17) .................. 52
3.1.8 測線Line 16 (圖3-18、圖3-19) .................. 53
3.1.9 測線Line 18 (圖3-20、圖3-21) .................. 54
3.1.10 測線Line 22 (圖3-22、圖3-23) ................. 54
3.1.11 測線Line 24 (圖3-24、圖3-25) ................. 55
3.1.12 測線Line 27 (圖3-26、圖3-27) ................. 56
3.1.13 測線Line 30 (圖3-28、圖3-29) ................. 56
3.1.14 測線Line 32 (圖3-30、圖3-31) ................. 57
3.1.15 測線Line 36 (圖3-32、圖3-33) ................. 58
3.1.16 測線Line 40 (圖3-34、圖3-35) ................. 59
3.1.17 測線Line 43 (圖3-36、圖3-37) ................. 60
3.1.18 測線Line 46 (圖3-38、圖3-39) ................. 60
3.1.19 測線Line 48 (圖3-40、圖3-41) ................. 61
3.1.20 測線Line 51 (圖3-42、圖3-43) ................. 62
3.1.21 測線Line 53 (圖3-44、圖3-45) ................. 62
3.1.22 測線Line 57 (圖3-46、圖3-47) ................. 63
3.1.23 測線Line 60 (圖3-48、圖3-49) ................. 64
3.1.24 測線Line 63 (圖3-50、圖3-51) ................. 65
3.1.25 測線Line 65 (圖3-52、圖3-53) ................. 65
3.1.26 測線Line 67 (圖3-54、圖3-55) ................. 66
3.1.27 測線Line 70 (圖3-56、圖3-57) ................. 67
3.1.28 測線Line 72 (圖3-58、圖3-59) ................. 67
3.1.29 測線Line 75 (圖3-60、圖3-61) ................. 68
3.2 震測相分析與解釋 ................................ 68
3.3 三維震測剖面解釋 ................................ 71
3.3.1 三維震測100 毫秒等時橫切面 (圖3-62、圖3-63) ..... 71
3.3.2 三維震測110 毫秒等時橫切面 (圖3-64、圖3-65) ..... 73
3.3.3 三維震測120 毫秒等時橫切面 (圖3-66、圖3-67) ..... 74
3.3.4 三維震測130 毫秒等時橫切面 (圖3-68、圖3-69) ..... 74
3.3.5 三維震測140 毫秒等時橫切面 (圖3-70、圖3-71) ..... 75
3.3.6 三維震測150 毫秒等時橫切面 (圖3-72、圖3-73) ..... 76
3.3.7 三維震測160 毫秒等時橫切面 (圖3-74、圖3-75) ..... 77
3.3.8 三維震測170 毫秒等時橫切面 (圖3-76、圖3-77) ..... 78
3.3.9 三維震測180 毫秒等時橫切面 (圖3-78、圖3-79) ..... 78
第四章 討論 ......................................... 159
4.1 海床侵蝕 ........................................ 159
4.2 研究區域海流與峽谷溢流 ........................... 160
4.3 峽谷沉積物活動 .................................. 161
第五章 結論 ........................................ 176
參考文獻 ........................................... 177
參考文獻 Babonneau, N., Savoye, B., Cremer, M., Klein, B., “Morphology and architecture of the present canyon and channel system of the Zaire deep-sea fan”, Marine and Petroleum Geology, Vol. 19, pp. 445-467, 2002.
Brackenridge, R., Dorrik, A. V. S., Hernández-Molina, F. J., “Contourites within a deep-water sequence stratigraphic framework”, Geo-Marine Letters, Vol. 31, pp. 343-360, 2011.
Carter, L., Milliman, J. D., Talling, P. J., Gavey, R., Wynn, R. B., “Near-synchronous and delayed initiation of long run-out submarine sediment flows from a record-breaking river flood, offshore Taiwan”, Geophysical Research Letters, Vol. 39, L12603, 2012.
Chen, S.-C., Hsu, S.-K., Wang, Y., Chung, S.-H., Chen, P.-C., Tsai, C.-H., Liu, C.-S., Lin, H.-S., Lee, Y.-W., “Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan”, Journal of Asian Earth Sciences, Vol. 92, pp. 201-214, 2014.
Chiang, C.-S., Yu, H.-S., “Morphotectonics and incision of the Kaoping submarine canyon, SW Taiwan orogenic wedge”, Geomorphology, Vol 80, pp. 199-213, 2006.
Chiang, C.-S., Yu, H.-S., “Evidence of hyperpycnal flows at the head of the meandering Kaoping Canyon off SW Taiwan”, Geo-Marine Letters, Vol. 80, pp. 161-169, 2008.
Chiang, C.-S., Yu, H.-S., “Sedimentary erosive processes and sediment dispersal in Kaoping
submarine canyon”, Science China Earth Science, Vol. 54, pp. 259-271, 2011.
Chiang, C.-S., Hsiung, K.-H., Yu, H.-S., Chen, S.-C., “Three types of modern submarine canyons on the tectonically active continental margin offshore southwestern Taiwan”, Marine Geophysical Research, Vol. 41:4, 2020.
Covault, J. A., Fildani, A., Romans, B. W., McHargue, T., “The natural range of submarine canyon-and-channel longitudinal profiles”, Geosphere, Vol. 7, pp. 313-332, 2011.
Duchesne, M. J., Bellefleur, G., Galbraith, M., Kolesar, R., Kuzmiski, R., “Strategies for waveform processing in sparker data”, Marine Geophysical Researches, Vol. 28, pp. 153-164, 2007.
Earle, S., Physical Geology., Victoria, B.C.: BCcampus., Retrieved from https://opentextbc.ca/geology/., 2015.
Farre, J. A., McGregor, B. A., Ryan, W. B. F., Robb, J. M., “Breaching the shelf break:passage from youthful to mature phase in submarine canyon evolution. In: Stanley, D.J., Moore, G.T. (Eds.), The Shelf Break: Critical Interface on Continental Margins”, Society of Economic Paleontologists and Mineralogists Special Publication, Vol. 33, pp. 25–39, 1983.
Harris, P. T., Whiteway T., “Global distribution of large submarine canyons: Geomorphic differences between active and passive continental margins”, Marine Geology, Vol. 285, pp. 69-86, 2011.
Hjulstrom, F., “Studies of the morphological activity of rivers as illustrated by the River Fyris”, Bulletin. Geological Institute Upsalsa, Vol.25, pp. 221-527, 1935.
Hsiung, K.-H., Yu, H.-S., Chiang, C.-S. “The modern Kaoping transient fan offshore SW Taiwan: Morphotectonics and development”, Geomorphology, Vol. 300, pp. 151-163, 2018.
Hsu, S.-K., Kuo, J., Lo, C.-L., Tsai, C.-H., Doo, W.-B., Ku, C.-Y., Sibuet, J.-C., “Turbidity Currents, Submarine Landslides and the 2006 PingtungEarthquake off SW Taiwan”, Terrestrial Atmospheric and Oceanic Sciences, Vol. 19, pp. 767-772, 2008.
Huh, C.-A., Lin, H.-L., Lin, S., Huang, Y.-W., “Modern accumulation rates and a budget of sediment off the Gaoping (Kaoping) River, SW Taiwan: A tidal and flood dominated depositional environment around a submarine canyon”, Journal of Marine Systems, Vol. 76, pp. 405-416, 2009.
Jan, S., Tseng, Y.-H, Dietrich, D. E., “Sources of water in the Taiwan Strait”, Journal of Oceanography, Vol. 66, pp. 211-221, 2010.
Jobe, Z. R., Lowe, D. R., Uchytil, S. J., “Two fundamentally different types of submarine canyons along the continental margin of Equatorial Guinea”, Marine and Petroleum Geology, Vol. 28, pp. 843-860, 2011.
Lin, A. T., Yao, B., Hsu, S.-K., Liu, C.-S., Huang, C.-Y., “Tectonic features of the incipient arc-continent collision zone of Taiwan: implications for seismicity”, Tectonophysics, Vol. 479, pp. 28-42, 2009.
Liu, C.-S., Huang, I. L., Teng, L. S., “Structural features off southeastern Taiwan”, Marine Geology, Vol. 137, pp. 305-319, 1997.
Liu, C.-S., Lundberg, N. Reed, D. L., Huang, Y.-L., “Morphological and seismic characteristics of the Kaoping Submarine Canyon”, Marine Geology, Vol. 111, pp. 93-108, 1993.
Liu, J. T., Hung, J.-J., Huang, Y.-W., “Partition of suspended and riverbed sediments related to the salt-wedge in the lower reaches of a small mountainous river”, Marine Geology, Vol. 264, pp. 152-164, 2009.
Liu, J. T., Kao, S.-J., Huh, C.-A., Hung, C. C., “Gravity flows associated with floods and carbon burial: Taiwan as instructional source area”, Annual Review of Marine Science, Vol. 5, pp. 47-68, 2013.
Liu, J. T., Liu, K.-J., Huang, J. C., “The effect of a submarine canyon on the river sediment dispersal and inner shelf sediment movements in southern Taiwan”, Marine Geology, Vol. 181, pp. 357-386, 2002.
Liu, J. T., Hsu, R. T., Hung, J.-J., Chang, Y.-P., Wang. Y.-H., Rendle-Bühring, R. H., Lee, C.-L., Huh, C.-A., Yang, R. J., “From the highest to the deepest: The Gaoping River–Gaoping Submarine Canyon dispersal system”, Earth-Science Reviews, Vol. 153, pp. 274-300, 2016.
Liu, J. T., Huh, C.-A., You, C.-F., “Fate of terrestrial substances in the Gaoping (Kaoping) shelf/slope and in the off SW Taiwan”, Journal of Marine Systems, Vol.76, pp. 367–368, 2009b.
Lopez, M., “Architecture and depositional pattern of the Quaternary deep-sea fan of the Amazon”, Marine and Petroleum Geology, Vol. 18, pp. 479–486, 2001.
Maier, K. L., Johnson, S. Y., Hart, P., “Controls on submarine canyon head evolution: Monterey Canyon, offshore central California”, Marine Geology, Vol. 404, pp. 24-40, 2018.
Mountjoy, J. J., Pecher, I., Henrys, S., Crutchley, G., Barnes, P. M., Plaza‐Faverola, A., “Shallow methane hydrate system controls ongoing, downslope sediment transport in a low‐velocity active submarine landslide complex, Hikurangi Margin, New Zealand”, Geochem. Geophys. Geosyst, Vol. 15, pp. 4137-4156, 2014.
Piper, D. J. W., Normark, W. R., “Processes that initiate turbidity currents and their influence on turbidites: a marine geology perspective”, Journal of Sedimentary Research, Vol. 79, pp. 347–362, 2009.
Pirmez, C., Imran, J., “Reconstruction of turbidity currents in Amazon Channel”, Marine and Petroleum Geology, Vol. 20, pp. 823-849, 2003.
Pratson, L. F., Ryan, W. B. F., Mountain, G. S., Twichell, D. C., “Submarine canyon initiation by downslope-eroding sediment flows: evidence in late Cenozoic strata on the New Jersey continental slope”, Geological Society of America Bulletin, Vol. 106, pp. 395–412, 1994.
Pratson, L. F., Coakley, B. J., “A model for the headward erosion of submarine canyons induced by downslope-eroding sediment flows”, Geological Society of America Bulletin, Vol. 108, pp. 225–234, 1996.
Shepard, F. P., “Submarine canyons: multiple causes and long-time persistence”, AAPG Bulletin, Vol. 65, pp. 1062–1077, 1981.
Su, C.-C., Hsu, S.-T., Hsu, H.-H., Lin, J.-Y., Dong, J.-J., “Sedimentological characteristics and seafloor failure offshore SW Taiwan”, Terrestrial Atmospheric and Oceanic Sciences, Vol. 29, pp. 65-76, 2018.
Talling, P. J., Paull, C. K., Piper, D. J. W., “How are subaqueous sediment density flowstriggered, what is their internal structure and howdoes it evolve? Direct observations from monitoring of active flows”, Earth-Science Reviews, Vol. 125, pp. 244–287, 2013.
Van Wagoner, J. C., Posamentier, H. W., Mitchum, R. M., Vail, P. R., Sarg, J. F., Loutit, T. S., Hardenbol, J., “An Overview of the Fundamentals of Sequence Stratigraphy and Key Definitions”, Society of Economic Paleontologists and Mineralogists, Vol. 42, pp. 39-46, 1988.
Yu, H. S., Chiang, C. S., Shen, S.M., “Tectonically active sediment dispersal system in SW Taiwan margin with emphasis on the Kaoping Submarine Canyon”, Journal of Marine Systems, Vol. 76, pp. 369-382. 2009.
Yu, S.-W., Tsaia, L. L., Talling, P. J., Lin, A. T., Mii, H.-S., Chung, S.-H., Horng, C.-S., “Sea level and climatic controls on turbidite occurrence for the past 26 kyr on the flank of the Gaoping Canyon off SW Taiwan”, Marine Geology, Vol. 392, pp. 140-150, 2017.
蔡仲霖,高屏峽谷極上游區域峽谷侵蝕與泥貫入體活動之交互關係研究,國立中央大學地球科學系碩士論文,共136頁,2019。
指導教授 葉一慶(Yi-Ching Yeh) 審核日期 2020-7-30
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明