博碩士論文 106622010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:62 、訪客IP:18.117.254.221
姓名 朱佾蓁(Yi-Chen Chu)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 利用地電阻影像法計算水文地質參數:以屏東平原為例
(Estimation of hydraulic parameter using electrical resistivity tomography(ERT : A case study in the Pingtung Plain, Taiwan)
相關論文
★ 利用RTL (Region-Time-Length) 演算法 探討921 集集大地震之前兆現象★ 集集餘震b值與碎形維度分析
★ 應用太空大地測量法探討台南地區之地表變形★ 電容耦合地電阻探測系統應用於地下管線與坑道之研究
★ 以交叉對比分析地震的時空分佈行態★ 利用PI方法研究地震前兆活動
★ 臺灣深部電性構造及其板塊構造意義★ 利用Pattern Informatics研究1999年台灣集集與2008年中國汶川地震之前兆現象
★ 模擬地震前兆行為之數值模型★ 地電法於地下掩埋物調查之研究
★ 利用經驗模態分解法(EMD)探討潮汐效應對地震活動的影響★ 利用LURR方法探討臺灣1994年後大地震之前兆現象
★ 利用遠距沙堆模型探討特徵地震之準週期性★ 台灣天然電磁場觀測研究
★ 一維滑塊模型事件叢集特性分析與復發時間統計★ TCDP井下地震儀之微地震紀錄的特性
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 地電阻法已被廣泛用於確定層狀介質的厚度和電阻率,本研究於屏東平原進行地電阻施測,此研究目的為透過地電阻法了解屏東平原區域水文特性與計算其水文地質參數,希望此研究能夠作為水文地質評估參考並提升數值模擬能力。本研究地點有二,其一位於大樹區大樹國小,於校區內建置一井地地電阻監測測線;其二研究地點位於大寮區臺灣中油大寮水源站,先於2017年進行地電阻一次性施測期間進行抽水作業,同時收集不同抽水時段地電阻資料,接著於2019年建置一地表地電阻監測測線,期間內進行例行抽水作業,可藉此來了解地下水抽取與地電阻的關聯性。大樹區域之地電阻剖面結果顯示,降雨前後測量之地電阻剖面有明顯的電阻率分佈變化,變化範圍根據現地水位資料顯示,為地下水位以下為飽和帶,此電阻率反映影響原因可能為受到雨水(室溫)慢慢入滲至地下時(地下水水溫約15oC ),造成地下水層溫度的改變,進而影響地層電阻率改變,根據深度與時間,可推估其水力傳導係數為1.73*10-4 m/ s。大寮區域 2017 年 8 月前導實驗結果隨著抽水事件水位洩降約 10 米。接著於2019 年進行地電阻監測期間,隨著抽水事件,計算區域相對飽和度變化,其飽和度變化範圍於深度10~20 米,此結果更驗證出此區域抽水洩降範圍。將大寮區域之電阻率利用Kozeny-Carman-Bear equation 可推算出水力傳導係數約為10−4~10−3m/s 且孔隙率約為15%~30%。將此方程式利用屏東平原第四紀沖積層鄰近嶺口礫岩之區域水文地質參數基本資料代入,其結果顯示粒徑小之砂岩泥岩對應之井測電阻率較小,透水係數也有較小的趨勢,且受壓密作用影響,隨深度越深,孔隙率有變小的趨勢。屏東平原西側為嶺口礫岩與全新世台地堆積層與第四紀沖積層,粒徑大小較一致,其井測電阻率值範圍廣,深度分布廣,但透水係數範圍皆落在10−3~10−4 m/s。
摘要(英) Electrical resistivity surveying methods have been widely used to determine the thickness and resistivity of layered media for the purpose of assessing groundwater potential in fractured unconfined aquifers. In this study, we used Electrical Resistivity Tomography (ERT)
monitoring system at two study sites in the Pingtung Plain. One is the surface-borehole survey line at the Dashu, Kaohsiung City, Taiwan, and the other is the surface survey line at the Daliao, Kaohsiung City, Taiwan. We analyzed the change in the electrical properties of the gravel layer during the rainfall season at the Dashu site and analyzed the groundwater level change
by ERT method during the pumping event at the Daliao site which is the pumping station to understand the groundwater replenishment situation. The ERT results of Dashu site show that there is a significant change in the resistivity distribution of the ground resistance profile measured before and after rainfall. The resistivity can be calculated Relative Water Saturation (RWS) of the shallow formation fluid, and it reveal the permeability of the gravel layer and the hydrogeological characteristics of the sites. Affected by rainwater infiltration, the vertical infiltration of shallow aquifers is obvious, while the deep aquifers may be subject to vertical and horizontal infiltration to produce relative saturation changes. Due to the obvious vertical infiltration of shallow aquifers, depending on the depth and time , The hydraulic conductivity can be estimated as 1.73*10-4 m/ s . In August 2017, the ERT results of Daliao site show that it dropped about 10 meters with the water level of the pumping event, which is in line with theoretical estimates. During the ground resistance monitoring in 2019, with the pumping event, the relative saturation change of the area is calculated,
and its saturation change range is at a depth of 10 ~ 20 meters. Using the Kozeny-Carman-Bear equation of the resistivity of the Daliao area, the hydraulic conductivity can be estimated to be about 10−4~10−3m/s and the porosity is about 15% ~ 30%, as a reference for
hydrogeological parameters. Furthermore, we use the hydraulic conductivity coefficient theoretical trend line to analyze the data of WRA’s 34 wells in western Pingtung Plain. The results show that the sandstone and mudstones with small variables have smaller well-measured resistivity and a lower hydraulic conductivity. Affected by compaction, the porosity tends to decrease with increasing depth. On the west side of the Pingtung Plain, the particle sizes are relatively consistent, and the hydraulic conductivity is 10−4~10−3m/s .
關鍵字(中) ★ 地電阻法
★ 水文地質參數
★ 相對飽和度
★ 水力傳導係數
關鍵字(英)
論文目次 中文摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 vii
表目錄 x
第一章 緒論 1
1-1 研究動機與目的 1
1-2 前人研究 2
1-3 研究區域概述 4
1-4 本文介紹 17
第二章 研究原理與方法 19
2-1 地電阻影像剖面法簡介 19
2-2 儀器簡介 21
2-3 電極陣列 23
2-3-1 傳統陣列 23
2-3-2 混編陣列 23
2-4 水文地質概念 25
2-4-1 地表下水之流向 25
2-4-2 影響半徑 25
第三章 資料處理與分析方法 27
3-1 原始資料處理 27
3-1-1 移除自然電位計算 27
3-1-2 阻抗解算 28
3-2 篩選資料 29
3-2-1 重複施測誤差 30
3-2-2 穩定電極配對資料篩選 30
3-3 逆推地電阻剖面 31
3-3-1 逆推理論 31
3-3-2 逆推資料 33
3-3-3 逆推資料門檻 33
3-3-4 逆推方法與設定 34
3-3-5 逆推過程 35
3-4 水文地質參數計算與分析方法 37
3-4-1 相對飽和度 37
3-4-2 地層電阻率與水力傳導係數 38
第四章 研究結果 41
4-1 大樹區域地電阻監測 41
4-1-1 資料收集與處理 41
4-1-2 地電阻剖面分析 42
4-1-3 降雨效應分析 42
4-2 大寮區域地電阻一次性施測 50
4-2-1 資料收集與處理 50
4-2-2 抽水效應分析 50
4-3 大寮區域地電阻監測 58
4-3-1 資料收集與處理 58
4-3-2 抽水效應分析 60
4-3-3 降雨效應分析 62
第五章 討論與結論 94
5-1 電阻率影響因素 94
5-2 降雨效應之影響 95
5-2-1 大樹區域 95
5-2-2 大寮區域 96
5-3 抽水效應之影響 101
5-3-1 抽水洩降範圍與電阻率空間變異 101
5-3-2 抽水效應之地電阻反應延遲 101
5-3-3 鄰近抽水井之視電阻率擾動 102
5-4 水力傳導係數推算 103
5-4-1 大樹區域 103
5-4-2 大寮區域 104
5-4-3 屏東平原 104
5-5 結論 112
參考文獻 114
參考文獻 Archie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the AIME, 146(01), 54-62.
Aster, D. B. (2013). U.S. Patent No. 8,508,313. Washington, DC: U.S. Patent and Trademark Office.
Bear, J., & Braester, C. (1972). On the flow of two immscible fluids in fractured porous media. In Developments in Soil Science (Vol. 2, pp. 177-202). Elsevier.
Bièvre, G., Jongmans, D., Winiarski, T., & Zumbo, V. (2012). Application of geophysical measurements for assessing the role of fissures in water infiltration within a clay landslide (Trièves area, French Alps). Hydrological Processes, 26(14), 2128-2142..
Chambers, J. E., Meldrum, P. I., Gunn, D. A., Wilkinson, P. B., Kuras, O., Weller, A. L., & Ogilvy, R. D. (2009, September). Hydrogeophysical monitoring of landslide processes using automated time-lapse electrical resistivity tomography (ALERT). In Near Surface 2009-15th EAGE European Meeting of Environmental and Engineering Geophysics (pp. cp-134). European Association of Geoscientists & Engineers.
Chang, P. Y., Chang, L. C., Hsu, S. Y., Tsai, J. P., & Chen, W. F. (2017). Estimating the hydrogeological parameters of an unconfined aquifer with the time-lapse resistivity-imaging method during pumping tests: Case studies at the Pengtsuo and Dajou sites, Taiwan. Journal of Applied Geophysics, 144, 134-143.7
Chaudhuri, A., Sekhar, M., Descloitres, M., Godderis, Y., Ruiz, L., & Braun, J. J. (2013). Constraining complex aquifer geometry with geophysics (2-D ERT and MRS measurements) for stochastic modelling of groundwater flow. Journal of Applied Geophysics, 98, 288-297.
Cooper Jr, H. H., & Jacob, C. E. (1946). A generalized graphical method for evaluating formation constants and summarizing well‐field history. Eos, Transactions American Geophysical Union, 27(4), 526-534.
Corwin, R. F., & Hoover, D. B. (1979). The self-potential method in geothermal exploration. Geophysics, 44(2), 226-245.
Dakhnov, V. N. (1962). Interpretation of results of geophysical investigation in wells. Gostoptehizdatm, Moscow.
De Lima, O. A. L., & Niwas, S. (2000). Estimation of hydraulic parameters of shaly sandstone aquifers from geoelectrical measurements. Journal of hydrology, 235(1-2), 12-26.
Descloitres, M., Ribolzi, O., Le Troquer, Y., & Thiébaux, J. P. (2008). Study of water tension differences in heterogeneous sandy soils using surface ERT. Journal of Applied Geophysics, 64(3-4), 83-98.
Domenico, P. A., & Schwartz, F. W. (1990). Physical and chemical hydrogeology, John Wiely and Sons. New York, 824.
Farzamian, M., Santos, F. A. M., & Khalil, M. A. (2015). Application of EM38 and ERT methods in estimation of saturated hydraulic conductivity in unsaturated soil. Journal of applied geophysics, 112, 175-189..
Farzamian, M., Santos, F. A. M., & Khalil, M. A. (2015). Estimation of unsaturated hydraulic parameters in sandstone using electrical resistivity tomography under a water injection test. Journal of applied geophysics, 121, 71-83.
Friedel, S., Thielen, A., & Springman, S. M. (2006). Investigation of a slope endangered by rainfall-induced landslides using 3D resistivity tomography and geotechnical testing. Journal of Applied Geophysics, 60(2), 100-114.
Zhang, G., Zhang, G. B., Chen, C. C., Chang, P. Y., Wang, T. P., Yen, H. Y., ... & Jia, Z. Y. (2016). Imaging rainfall infiltration processes with the time-lapse electrical resistivity imaging method. Pure and Applied Geophysics, 173(6), 2227-2239.
Kruseman, G. P., De Ridder, N. A., & Verweij, J. M. (1970). Analysis and evaluation of pumping test data (Vol. 11). The Netherlands: International institute for land reclamation and improvement.
Kuras, O., Pritchard, J. D., Meldrum, P. I., Chambers, J. E., Wilkinson, P. B., Ogilvy, R. D., & Wealthall, G. P. (2009). Monitoring hydraulic processes with automated time-lapse electrical resistivity tomography (ALERT). Comptes Rendus Geoscience, 341(10-11), 868-885.
Lebourg, T., Hernandez, M., Zerathe, S., El Bedoui, S., Jomard, H., & Fresia, B. (2010). Landslides triggered factors analysed by time lapse electrical survey and multidimensional statistical approach. Engineering Geology, 114(3-4), 238-250.
Lehmann, P., Gambazzi, F., Suski, B., Baron, L., Askarinejad, A., Springman, S. M., ... & Or, D. (2013). Evolution of soil wetting patterns preceding a hydrologically induced landslide inferred from electrical resistivity survey and point measurements of volumetric water content and pore water pressure. Water Resources Research, 49(12), 7992-8004.
Zhu, L., Gong, H., Chen, Y., Li, X., Chang, X., & Cui, Y. (2016). Improved estimation of hydraulic conductivity by combining stochastically simulated hydrofacies with geophysical data. Scientific reports, 6, 22224.
Loudon, A. G. (1952). The computation of permeability from simple soil tests. Geotechnique, 3(4), 165-183.
Mastrocicco, M., Vignoli, G., Colombani, N., & Zeid, N. A. (2010). Surface electrical resistivity tomography and hydrogeological characterization to constrain groundwater flow modeling in an agricultural field site near Ferrara (Italy). Environmental Earth Sciences, 61(2), 311-322.
Mele, M., Bersezio, R., Giudici, M., Rusnighi, Y., & Lupis, D. (2010). The architecture of alluvial aquifers: an integrated geological-geophysical methodology for multiscale characterization. Mem. Descr. Carta Geol. d’It XC, 209-224.
Miller, C. R., Routh, P. S., Brosten, T. R., & McNamara, J. P. (2008). Application of time-lapse ERT imaging to watershed characterization. Geophysics, 73(3), G7-G17..
Park, S. K., & Dickey, S. K. (1989). Accurate estimation of conductivity of water from geoelectrical measurements—A new way to correct for clay. Groundwater, 27(6), 786-792.
Urish, D. W. (1981). Electrical resistivity—hydraulic conductivity relationships in glacial outwash aquifers. Water Resources Research, 17(5), 1401-1408.
Simpson, F., & Bahr, K. (2005). Practical magnetotellurics. Cambridge University Press.
Niwas, S., & Celik, M. (2012). Equation estimation of porosity and hydraulic conductivity of Ruhrtal aquifer in Germany using near surface geophysics. Journal of Applied Geophysics, 84, 77-85.
Perdomo, S., Ainchil, J. E., & Kruse, E. (2014). Hydraulic parameters estimation from well logging resistivity and geoelectrical measurements. Journal of Applied Geophysics, 105, 50-58.
Di Maio, R., Piegari, E., Todero, G., & Fabbrocino, S. (2015). A combined use of Archie and van Genuchten models for predicting hydraulic conductivity of unsaturated pyroclastic soils. Journal of Applied Geophysics, 112, 249-255.
Sikandar, P., & Christen, E. W. (2012). Geoelectrical sounding for the estimation of hydraulic conductivity of alluvial aquifers. Water resources management, 26(5), 1201-1215.
Soupios, P. M., Kouli, M., Vallianatos, F., Vafidis, A., & Stavroulakis, G. (2007). Estimation of aquifer hydraulic parameters from surficial geophysical methods: A case study of Keritis Basin in Chania (Crete–Greece). Journal of Hydrology, 338(1-2), 122-131.
Szalai, S., & Szarka, L. (2008). Parameter sensitivity maps of surface geoelectric arrays II. Nonlinear and focussed arrays. Acta Geodaetica et Geophysica Hungarica, 43(4), 439-447..
Travelletti, J., Sailhac, P., Malet, J. P., Grandjean, G., & Ponton, J. (2012). Hydrological response of weathered clay‐shale slopes: Water infiltration monitoring with time‐lapse electrical resistivity tomography. Hydrological Processes, 26(14), 2106-2119.
Verwer, K., Eberli, G. P., & Weger, R. J. (2011). Effect of pore structure on electrical resistivity in carbonates. AAPG bulletin, 95(2), 175-190.
Winsauer, W. O., Shearin Jr, H. M., Masson, P. H., & Williams, M. (1952). Resistivity of brine-saturated sands in relation to pore geometry. AAPG bulletin, 36(2), 253-277.
Yeboah-Forson, A., Comas, X., & Whitman, D. (2014). Integration of electrical resistivity imaging and ground penetrating radar to investigate solution features in the Biscayne Aquifer. Journal of hydrology, 515, 129-138.
吳秉昀「地電阻影像法於海岸生物礁調查之研究 -以桃園觀音區為例」 國立中央大學 碩士論文 2017 年
許芳鳴「 以地電阻影像法探討地滑敏感區電阻率構造與環境因子之關係 」 國立中央大學 碩士論文 2015 年
張竝瑜、張舒凱、吳尹聿,利用地表地電阻方法協助建立台灣中部鼻子頭隘口區域淺層地下水位分佈變化之研究,水資源研究 2: 229-235.,2013
董倫道、楊潔豪、陳平護,水文地質調查研究及建檔-八十四年度報告-地球物理探測及地層對比之應用,經濟部中央地質調查所,1995
科技部,區域地下水智慧管理模式及技術研發-區域地下水智慧管理模式及技術研發(2/4) ,2019
經濟部中央地質調查所,臺灣地區地下水觀測網第一期計畫屏東平原水文地質調查研究總報告,2002
經濟部中央地質調查所,臺灣地區水文地質分區特性,地質環境與資源研討會論文集, 第125-132頁,2007
經濟部中央地質調查所,臺灣地區地下水區水文地質調查及地下水資源評估-地下水補注潛勢評估與地下水模式建置(1/4) ,2009
經濟部中央地質調查所,臺灣地區地下水區水文地質調查及地下水資源評估-地下水補注潛勢評估與地下水模式建置(2/4) ,2010
經濟部中央地質調查所,臺灣地區地下水區水文地質調查及地下水資源評估-地下水補注潛勢評估與地下水模式建置(3/4) ,2011
經濟部中央地質調查所,臺灣地區地下水區水文地質調查及地下水資源評估-地下水補注潛勢評估與地下水模式建置(4/4) ,2012
經濟部中央地質調查所,地下水補注地質敏感區劃定計畫書-G0002屏東平原,2014
指導教授 陳建志(Chien-Chih Chen) 審核日期 2020-8-12
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明