參考文獻 |
Archie, G. E. (1942). The electrical resistivity log as an aid in determining some reservoir characteristics. Transactions of the AIME, 146(01), 54-62.
Aster, D. B. (2013). U.S. Patent No. 8,508,313. Washington, DC: U.S. Patent and Trademark Office.
Bear, J., & Braester, C. (1972). On the flow of two immscible fluids in fractured porous media. In Developments in Soil Science (Vol. 2, pp. 177-202). Elsevier.
Bièvre, G., Jongmans, D., Winiarski, T., & Zumbo, V. (2012). Application of geophysical measurements for assessing the role of fissures in water infiltration within a clay landslide (Trièves area, French Alps). Hydrological Processes, 26(14), 2128-2142..
Chambers, J. E., Meldrum, P. I., Gunn, D. A., Wilkinson, P. B., Kuras, O., Weller, A. L., & Ogilvy, R. D. (2009, September). Hydrogeophysical monitoring of landslide processes using automated time-lapse electrical resistivity tomography (ALERT). In Near Surface 2009-15th EAGE European Meeting of Environmental and Engineering Geophysics (pp. cp-134). European Association of Geoscientists & Engineers.
Chang, P. Y., Chang, L. C., Hsu, S. Y., Tsai, J. P., & Chen, W. F. (2017). Estimating the hydrogeological parameters of an unconfined aquifer with the time-lapse resistivity-imaging method during pumping tests: Case studies at the Pengtsuo and Dajou sites, Taiwan. Journal of Applied Geophysics, 144, 134-143.7
Chaudhuri, A., Sekhar, M., Descloitres, M., Godderis, Y., Ruiz, L., & Braun, J. J. (2013). Constraining complex aquifer geometry with geophysics (2-D ERT and MRS measurements) for stochastic modelling of groundwater flow. Journal of Applied Geophysics, 98, 288-297.
Cooper Jr, H. H., & Jacob, C. E. (1946). A generalized graphical method for evaluating formation constants and summarizing well‐field history. Eos, Transactions American Geophysical Union, 27(4), 526-534.
Corwin, R. F., & Hoover, D. B. (1979). The self-potential method in geothermal exploration. Geophysics, 44(2), 226-245.
Dakhnov, V. N. (1962). Interpretation of results of geophysical investigation in wells. Gostoptehizdatm, Moscow.
De Lima, O. A. L., & Niwas, S. (2000). Estimation of hydraulic parameters of shaly sandstone aquifers from geoelectrical measurements. Journal of hydrology, 235(1-2), 12-26.
Descloitres, M., Ribolzi, O., Le Troquer, Y., & Thiébaux, J. P. (2008). Study of water tension differences in heterogeneous sandy soils using surface ERT. Journal of Applied Geophysics, 64(3-4), 83-98.
Domenico, P. A., & Schwartz, F. W. (1990). Physical and chemical hydrogeology, John Wiely and Sons. New York, 824.
Farzamian, M., Santos, F. A. M., & Khalil, M. A. (2015). Application of EM38 and ERT methods in estimation of saturated hydraulic conductivity in unsaturated soil. Journal of applied geophysics, 112, 175-189..
Farzamian, M., Santos, F. A. M., & Khalil, M. A. (2015). Estimation of unsaturated hydraulic parameters in sandstone using electrical resistivity tomography under a water injection test. Journal of applied geophysics, 121, 71-83.
Friedel, S., Thielen, A., & Springman, S. M. (2006). Investigation of a slope endangered by rainfall-induced landslides using 3D resistivity tomography and geotechnical testing. Journal of Applied Geophysics, 60(2), 100-114.
Zhang, G., Zhang, G. B., Chen, C. C., Chang, P. Y., Wang, T. P., Yen, H. Y., ... & Jia, Z. Y. (2016). Imaging rainfall infiltration processes with the time-lapse electrical resistivity imaging method. Pure and Applied Geophysics, 173(6), 2227-2239.
Kruseman, G. P., De Ridder, N. A., & Verweij, J. M. (1970). Analysis and evaluation of pumping test data (Vol. 11). The Netherlands: International institute for land reclamation and improvement.
Kuras, O., Pritchard, J. D., Meldrum, P. I., Chambers, J. E., Wilkinson, P. B., Ogilvy, R. D., & Wealthall, G. P. (2009). Monitoring hydraulic processes with automated time-lapse electrical resistivity tomography (ALERT). Comptes Rendus Geoscience, 341(10-11), 868-885.
Lebourg, T., Hernandez, M., Zerathe, S., El Bedoui, S., Jomard, H., & Fresia, B. (2010). Landslides triggered factors analysed by time lapse electrical survey and multidimensional statistical approach. Engineering Geology, 114(3-4), 238-250.
Lehmann, P., Gambazzi, F., Suski, B., Baron, L., Askarinejad, A., Springman, S. M., ... & Or, D. (2013). Evolution of soil wetting patterns preceding a hydrologically induced landslide inferred from electrical resistivity survey and point measurements of volumetric water content and pore water pressure. Water Resources Research, 49(12), 7992-8004.
Zhu, L., Gong, H., Chen, Y., Li, X., Chang, X., & Cui, Y. (2016). Improved estimation of hydraulic conductivity by combining stochastically simulated hydrofacies with geophysical data. Scientific reports, 6, 22224.
Loudon, A. G. (1952). The computation of permeability from simple soil tests. Geotechnique, 3(4), 165-183.
Mastrocicco, M., Vignoli, G., Colombani, N., & Zeid, N. A. (2010). Surface electrical resistivity tomography and hydrogeological characterization to constrain groundwater flow modeling in an agricultural field site near Ferrara (Italy). Environmental Earth Sciences, 61(2), 311-322.
Mele, M., Bersezio, R., Giudici, M., Rusnighi, Y., & Lupis, D. (2010). The architecture of alluvial aquifers: an integrated geological-geophysical methodology for multiscale characterization. Mem. Descr. Carta Geol. d’It XC, 209-224.
Miller, C. R., Routh, P. S., Brosten, T. R., & McNamara, J. P. (2008). Application of time-lapse ERT imaging to watershed characterization. Geophysics, 73(3), G7-G17..
Park, S. K., & Dickey, S. K. (1989). Accurate estimation of conductivity of water from geoelectrical measurements—A new way to correct for clay. Groundwater, 27(6), 786-792.
Urish, D. W. (1981). Electrical resistivity—hydraulic conductivity relationships in glacial outwash aquifers. Water Resources Research, 17(5), 1401-1408.
Simpson, F., & Bahr, K. (2005). Practical magnetotellurics. Cambridge University Press.
Niwas, S., & Celik, M. (2012). Equation estimation of porosity and hydraulic conductivity of Ruhrtal aquifer in Germany using near surface geophysics. Journal of Applied Geophysics, 84, 77-85.
Perdomo, S., Ainchil, J. E., & Kruse, E. (2014). Hydraulic parameters estimation from well logging resistivity and geoelectrical measurements. Journal of Applied Geophysics, 105, 50-58.
Di Maio, R., Piegari, E., Todero, G., & Fabbrocino, S. (2015). A combined use of Archie and van Genuchten models for predicting hydraulic conductivity of unsaturated pyroclastic soils. Journal of Applied Geophysics, 112, 249-255.
Sikandar, P., & Christen, E. W. (2012). Geoelectrical sounding for the estimation of hydraulic conductivity of alluvial aquifers. Water resources management, 26(5), 1201-1215.
Soupios, P. M., Kouli, M., Vallianatos, F., Vafidis, A., & Stavroulakis, G. (2007). Estimation of aquifer hydraulic parameters from surficial geophysical methods: A case study of Keritis Basin in Chania (Crete–Greece). Journal of Hydrology, 338(1-2), 122-131.
Szalai, S., & Szarka, L. (2008). Parameter sensitivity maps of surface geoelectric arrays II. Nonlinear and focussed arrays. Acta Geodaetica et Geophysica Hungarica, 43(4), 439-447..
Travelletti, J., Sailhac, P., Malet, J. P., Grandjean, G., & Ponton, J. (2012). Hydrological response of weathered clay‐shale slopes: Water infiltration monitoring with time‐lapse electrical resistivity tomography. Hydrological Processes, 26(14), 2106-2119.
Verwer, K., Eberli, G. P., & Weger, R. J. (2011). Effect of pore structure on electrical resistivity in carbonates. AAPG bulletin, 95(2), 175-190.
Winsauer, W. O., Shearin Jr, H. M., Masson, P. H., & Williams, M. (1952). Resistivity of brine-saturated sands in relation to pore geometry. AAPG bulletin, 36(2), 253-277.
Yeboah-Forson, A., Comas, X., & Whitman, D. (2014). Integration of electrical resistivity imaging and ground penetrating radar to investigate solution features in the Biscayne Aquifer. Journal of hydrology, 515, 129-138.
吳秉昀「地電阻影像法於海岸生物礁調查之研究 -以桃園觀音區為例」 國立中央大學 碩士論文 2017 年
許芳鳴「 以地電阻影像法探討地滑敏感區電阻率構造與環境因子之關係 」 國立中央大學 碩士論文 2015 年
張竝瑜、張舒凱、吳尹聿,利用地表地電阻方法協助建立台灣中部鼻子頭隘口區域淺層地下水位分佈變化之研究,水資源研究 2: 229-235.,2013
董倫道、楊潔豪、陳平護,水文地質調查研究及建檔-八十四年度報告-地球物理探測及地層對比之應用,經濟部中央地質調查所,1995
科技部,區域地下水智慧管理模式及技術研發-區域地下水智慧管理模式及技術研發(2/4) ,2019
經濟部中央地質調查所,臺灣地區地下水觀測網第一期計畫屏東平原水文地質調查研究總報告,2002
經濟部中央地質調查所,臺灣地區水文地質分區特性,地質環境與資源研討會論文集, 第125-132頁,2007
經濟部中央地質調查所,臺灣地區地下水區水文地質調查及地下水資源評估-地下水補注潛勢評估與地下水模式建置(1/4) ,2009
經濟部中央地質調查所,臺灣地區地下水區水文地質調查及地下水資源評估-地下水補注潛勢評估與地下水模式建置(2/4) ,2010
經濟部中央地質調查所,臺灣地區地下水區水文地質調查及地下水資源評估-地下水補注潛勢評估與地下水模式建置(3/4) ,2011
經濟部中央地質調查所,臺灣地區地下水區水文地質調查及地下水資源評估-地下水補注潛勢評估與地下水模式建置(4/4) ,2012
經濟部中央地質調查所,地下水補注地質敏感區劃定計畫書-G0002屏東平原,2014 |