博碩士論文 107329005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:33 、訪客IP:3.21.93.81
姓名 楊為恩(Wei-En Yang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 碳支撐銅基奈米觸媒之電催化二氧化碳還原效能研究
(The Electrochemical CO2 Reduction Performance of Carbon-Supported Cu-Based Nanocatalysts)
相關論文
★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應
★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質
★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應
★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究
★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應
★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應
★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應
★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應★ 鈀金鎳觸媒在鹼性乙醇氧化環境下結構與活性的關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 由於全球工業化的發展,導致大量二氧化碳排放所造成的環境災害已經是個嚴重的問題,因此再生能源的研究已經成為當今的熱門議題,而電化學還原二氧化碳反應 (carbon dioxide electrochemical reduction reaction, CO2RR) 因可將二氧化碳轉化成高價值化學燃料,為一改善二氧化碳排放的有效方法,但CO2RR主要問題是與其競爭的析氫反應(hydrogen evolution reaction, HER),這會導致較差選擇性和法拉第效率,因此本研究以銅為基底,目標開發出高活性、高選擇性以及長期穩定性的觸媒。
本研究分成兩個部分,第一部分使用對一氧化碳產物具有高選擇性的金形成銅基內核/金富含於外表層之奈米觸媒,可得到高質量活性並進一步添加第三金屬鋅,使其因增強協同作用以達到效能穩定,利用高解析度穿透式電子顯微鏡(high resolution transmission electron microscopy, HRTEM)、感應耦合電漿原子發射光譜分析儀(inductively coupled plasma-optical emission spectrometer, ICP-OES) 及X光繞射儀(X-ray diffraction, XRD) 證實其為非均相的三元奈米觸媒,根據一氧化碳剝離試驗(CO stripping)及X光電子能譜儀 (X-ray photoelectron spectroscopy, XPS)的結果,由於表面金的添加,弱化了中間產物一氧化碳的吸附能,但第三金屬鋅的添加又使CO吸附能上升,在電化學上,Au/C擁有最低的起始電位(-0.5 V),而在-0.8 V下Cu8Au2/C具有94 %的一氧化碳法拉第效率及最高的質量活性394.1 A/gAu-1,但其穩定度不佳,Cu8Au2/C的一氧化碳法拉第效率和質量活性分別衰退了26.5和58.9 %,而Cu8Au2Zn0.3/C和Cu8Au2Zn1.2/C在經過六小時的電化學穩定度試驗後,一氧化碳法拉第效率和質量活性分別只衰退2.2和12.4 % 與0.3和6.3 %,結果表明加入鋅作為第三元素可以增長觸媒穩定度。
第二部分合成二元Cu6Zn4/C和三元Cu8Au2Zn1.2/C及Cu7Ag2Zn1.2/C,在電催化CO2RR的效能表現上,相較於二元觸媒Cu6Zn4/C,三元觸媒Cu8Au2Zn1.2/C及Cu7Ag2Zn1.2/C展現最低的CO起始反應電位(-0.5 V)並且整體CO法拉第效能上升分別為46.4和80.1 %,並且Cu7Ag2Zn1.2/C在長時間-1.1 V,CO的法拉第效率可以維持75到80 %二十小時以上,本研究揭示了藉由形成二元銅基奈米觸媒可降低貴金屬的添加並且經由電子修飾效應達到高的一氧化碳選擇性與活性,並且在添加第三元素形成三元奈米觸媒之後,雖然損失部分活性,但觸媒整體的穩定性獲得提升。
摘要(英) Due to the development of global industrialization, the environmental disaster caused by a large amount of carbon dioxide emissions has been a serious problem. The research to develop renewable energy has become a hot topic today. The carbon dioxide electrochemical reduction reaction (CO2RR) is a promising method to reduce carbon dioxide emissions through the conversion of CO2 into high-value chemical fuels. However, the main problem of CO2RR is the competitive hydrogen evolution reaction (HER), which will lead to poor selectivity and Faraday efficiency. Therefore, in this study, the preparation and promotion of Cu-based binary and ternary catalysts with high activity, high selectivity and long-term stability have been elucidated.
This study is divided into two parts. Au with high selectivity for carbon monoxide is used to form Cu-based in the inner core/Au-rich on the outer shell structure, showing high mass activity (MA). Moreover, in order to further improve the stability, Zn is added to form ternary nanocatalysts. High resolution transmission electron microscope (HRTEM), inductively coupled plasma-optical emission spectrometer (ICP-OES) and X-ray diffraction (XRD) confirmed that they are heterogeneous ternary nanocatalysts. According to the results of carbon monoxide stripping test (CO stripping) and X-ray photoelectron spectroscopy (XPS), when Au is added, the adsorption energy of the carbon monoxide intermediate decreases, but after the addition of Zn, the CO adsorption energy rises. For the CO2RR, Au/C has the lowest onset potential (-0.5 V), while at -0.8 V Cu8Au2/C has a 94% carbon monoxide Faraday efficiency and the highest MA of 394.1 A gAu-1, but the stability is not good enough, in which there is a 26.5 and 58.9 % decay for CO Faraday efficiency (CO FE) and MA of Cu8Au2/C, respectively. On the other hand, for Cu8Au2Zn0.3/C and Cu8Au2Zn1.2/C, after 6 h of electrochemical stability test, their CO FE and MA of carbon monoxide only decay 2.2 and 12.4% and 0.3 and 6.3%, respectively, showing that the third element addition can enhance the stability of the catalysts.
In the second part, binary Cu6Zn4/C, and ternary Cu8Au2Zn1.2/C and Cu7Ag2Zn1.2/C are synthesized. In terms of the electrochemical CO2RR performance, compared with the binary Cu6Zn4/C, the ternary Cu8Au2Zn1.2/C and Cu7Ag2Zn1.2/C exhibit the lowest CO onset potential (-0.5 V) and CO FE increase to 46.4 and 80.1%, respectively. Moreover, CO FE of Cu7Ag2Zn1.2/C can be maintained from 75 to 80% for more than 20 h at -1.1 V (RHE). This study reveals that the formation of Cu-based binary nanocatalysts can reduce the amount of noble metals addition and achieve high CO selectivity and activity through the electron modification effect, and after adding a third element to form ternary nanocatalysts, although with some activity and selectivity loss, the overall stability of the catalysts is improved.
關鍵字(中) ★ 銅基奈米觸媒
★ 二氧化碳電化學還原
★ 法拉第效率
★ 三元觸媒
★ 穩定性
★ 質量活性
關鍵字(英) ★ Cu-based nanocatalysts
★ CO2 reduction reaction (CO2RR)
★ faradaic efficiency (FE)
★ ternary catalysts
★ stability
★ mass activity (MA)
論文目次 Table of Contents
摘要 i
Abstract iii
致謝 v
Table of Contents ixiv
List of Figures xi
List of Tables xiviv
Chapter 1 Introduction 1
1.1 Mechanism of CO2RR 2
1.2 Catalysts for CO2RR 5
1.3 Bimetallic Electrocatalysts with High CO Selectively 7
1.4 Durability of CO2RR catalyst 11
1.5 Motivation and Approach 14
Chapter 2 Experimental Section 16
2.1 Preparation of catalysts 16
2.1.1 Preparation of Au/C NPs catalysts 16
2.1.2 Preparation of Cu8Au2/C and Cu6Zn4/C catalysts 16
2.1.3 Preparation of Cu8Au2Zn0.3/C and Cu8Au2Zn1.2/C catalysts 19
2.1.4 Preparation of Cu7Ag2Zn1.2/C catalysts 19
2.2 Characterization of catalysts 23
2.2.1 Inductively coupled plasma–optical emission spectroscopy (ICP-OES) 23
2.2.2 X-ray diffraction (XRD) 23
2.2.3 High-resolution transmission electron microscopy (HRTEM) 23
2.2.4 X-ray photoelectron spectroscopy (XPS) 25
2.3 CO2RR Performance of Catalysts 26
2.3.1 Carbon dioxide reduction reaction (CO2RR) measurement 26
2.3.2 Gas chromatographic system 28
2.3.3 Standards preparation and calibration 29
2.3.4 CO stripping tests 29
3.1 The Structural and Electrochemical Characterizations of Au/C, CuAu/C and CuAuZn/C Catalysts 32
3.1.1 ICP-OES and HRTEM characterizations 32
3.1.2 XRD characterizations 32
3.1.3 XPS characterization 36
3.1.4 CO stripping characterization 39
3.1.5 CO2RR performance 42
3.1.6 Summary 45
3.2 The Structural and Electrochemical Characterizations of CuZn/C, CuAuZn/C and CuAgZn/C Catalysts 48
3.2.1 EDS and XRD characterizations 49
3.2.2 HRTEM characterizations 49
3.2.3 XPS characterizations 53
3.2.4 CO2RR performance 56
3.2.5 Summary 58
Chapter 4 Conclusions 61
References 63

List of Figures
Figure 1.1 The mechanism for the electrochemical CO2RR to products on transition metals and molecular catalysts: (a) pathways from CO2 to HCOO- products; (b) pathways from CO2 to CO products; (c) pathways from CO2 to hydrocarbons products [16]. 4
Figure 1.2 The reaction pathways of CO2RR on different metal-based heterogeneous catalysts [10]. 6
Figure 1.3 Surface valence band photoemission spectra of Au–Cu bimetallic nanoparticles and CO2 reduction mechanism on the catalyst surface of Au–Cu bimetallic nanoparticles [31]. 8
Figure 1.4 (a) The three surface regulation types of core-shell structures involved with distinct thicknesses at the atomic scale and (b) the various types of core/shell catalysts for CO2RR [33, 37]. 9
Figure 1.5 The morphological evolution of Cu nanocubes during the electrolysis process. (B) Time dependence of FE and current density for 41 nm Cu nanocubes. (C) 3D electron tomography of random Cu nanocubes at different stages in a 12 hours CO2RR. (Electrolyte: 0.1 M KHCO3, -1.1 V (vs. RHE) [44]. 12
Figure 1.6 Durability CO2RR to CO performance of the AuFe-CSNPs, Au-NPs, and Au foils (under -0.5 V (vs. RHE) and 0.5 M KHCO3 electrolyte) [45]. 13
Figure 1.7 The Volcano plot of partial current density for CO2RR at -0.8 V (vs. RHE) and onset potential vs CO binding strength on different metals [46]. 15
Figure 2.1 The experimental flowchart for the synthesis of Au NPs. 17
Figure 2.2 The experimental flowchart for the synthesis of Cu8Au2 and Cu6Zn4 NPs. 18
Figure 2.3 The experimental flowchart for the synthesis of Cu8Au2Zn0.3 and Cu8Au2Zn1.2 NPs. 20
Figure 2.4 The experimental flowchart for the synthesis of Cu8Ag2Zn1.2 NPs. 22
Figure 2.5 The experimental process for characterization of the catalysts. 24
Figure 2.6 The experimental setup for CO2RR measurement. 27
Figure 2.7 Calibration curves of CO and H2. 30
Figure 3.1 HRTEM micrographs of (a) Au/C, (b) Cu8Au2/C, (c) Cu8Au2Zn0.3/C and (d) Cu8Au2Zn1.2/C. The particle size distributions of (e)Au/C, (f) Cu8Au2/C, (g) Cu8Au2Zn0.3/C and (h) Cu8Au2Zn1.2/C are also shown. 34
Figure 3.2 XRD patterns of Au/C, Cu8Au2/C, Cu8Au2Zn0.3/C, Cu8Au2Zn1.2/C and standard Au, Cu, Zn, and ZnO patterns from JCPDS. 35
Figure 3.3 (a)XPS spectra of Cu 2p for Cu/C, Cu8Au2/C, Cu8Au2Zn0.3/C and Cu8Au2Zn1.2/C and (b)Au 4f for Au/C, Cu8Au2/C, Cu8Au2Zn0.3/C and Cu8Au2Zn1.2/C. 38
Figure 3.4 LSV of CO stripping (red line) and subsequent CV (black line) in 0.1 M H2SO4 solution with a scan rate of 50 mV/s for the (a) Au/C, (b) Cu8Au2/C, (c) Cu8Au2Zn0.3/C and (d) Cu8Au2Zn1.2/C. 40
Figure 3.5 (a) LSV curves and (b) CO FE of Au/C, Cu8Au2/C, Cu8Au2Zn0.3/C and Cu8Au2Zn1.2/C recorded in 0.1 M KHCO3 saturated with CO2. 43
Figure 3.6 (a) The CO stability tests and (b) the MA of Au/C, Cu8Au2/C, Cu8Au2Zn0.3/C and Cu8Au2Zn1.2/C recorded in 0.1 M KHCO3 saturated with CO2. 46
Figure 3.7 XRD patterns of Cu6Zn4/C, Cu8Au2Zn1.2/C and Cu7Ag2Zn1.2/C standard Au, Ag, Cu, Zn, and ZnO patterns from JCPDS. 51
Figure 3.8 The morphologies of catalysts before and after durability test for (a) and (d) Cu6Zn4/C, (b) and (e) Cu8Au2Zn1.2/C and (c) and (f) Cu7Ag2Zn1.2/C, respectively. The particle size distributions of (g) Cu6Zn4/C, (h) Cu8Au2Zn1.2/C and (i) Cu7Ag2Zn1.2/C are also shown. 52
Figure 3.9 (a)XPS spectra of Cu 2p for Cu6Zn4/C, Cu8Au2Zn1.2/C and Cu7Ag2Zn1.2/C and (b)Zn 2p for Cu6Zn4/C, Cu8Au2Zn1.2/C and Cu7Ag2Zn1.2/C. 55
Figure 3.10 (a) LSV curves and H2/CO/CH4 faradaic efficiency of (b)Cu6Zn4/C, (c) Cu8Au2Zn1.2/C and (d) Cu7Ag2Zn1.2/C and (e) the CO stability tests of Cu6Zn4/C, Cu8Au2Zn1.2/C and Cu7Ag2Zn1.2/C recorded in 0.1 M KHCO3 saturated with CO2. 57


List of Tables
Table1.1 Electrochemical reduction potentials (vs. RHE) of possible selected reactions in CO2 reduction in aqueous solutions at pH 7, 25 °C and 1 atm [10]. 3
Table 3.1 Grain size calculation and ICP-OES results of Au/C, Cu8Au2/C, Cu8Au2Zn0.3/C and Cu8Au2Zn1.2/C. 33
Table 3.2 XPS characterization of Cu/C, Cu8Au2/C, Cu8Au2Zn0.3/C, Cu8Au2Zn1.2/C and Au/C. 37
Table 3.3 CO oxidation charge and ECSA by CO stripping of Au/C, Cu8Au2/C, Cu8Au2Zn0.3/C and Cu8Au2Zn1.2/C. 41
Table 3.4 The CO and H2 faradaic efficiency of Au/C, Cu8Au2/C, Cu8Au2Zn0.3/C and Cu8Au2Zn1.2/C recorded in 0.1 M KHCO3 saturated with CO2. 44
Table 3.5 The CO FE and MA after 6 hours CA of Au/C, Cu8Au2/C, Cu8Au2Zn0.3/C and Cu8Au2Zn1.2/C recorded in 0.1 M KHCO3 saturated with CO2. 47
Table 3.6 Grain size calculation and SEM-EDS results of Cu6Zn4/C, Cu8Au2Zn1.2/C and Cu7Ag2Zn1.2/C. 50
Table 3.7 XPS characterization of Cu6Zn4/C, Cu8Au2Zn1.2/C and Cu7Ag2Zn1.2/C. 54
Table 3.8 The CO FE after CA of Cu6Zn4/C, Cu8Au2Zn1.2/C and Cu7Ag2Zn1.2/C recorded at -0.9 V (vs. RHE) in 0.1 M KHCO3 saturated with CO2. 59
Table 3.9 Performance comparison among all Cu-based (Au, Ag and Zn)
nanocatalysts. 60
參考文獻 1. M. I. Hoffert, K. Caldeira, G. Benford, D. R. Criswell, C. Green, H. Herzog, A. K. Jain, H. S. Kheshgi, K. S. Lackner, J. S. Lewis, H. D. Lightfoot, W. Manheimer, J. C. Mankins, M. E. Mauel, L. J. Perkins, M. E. Schlesinger, T. Volk and T. M. L. Wigley, Science, 2002, 298, 981-987.
2. P. M. Cox, R. A. Betts, C. D. Jones, S. A. Spall and I. J. Totterdell, Nature, 2000, 408, 184-187.
3. A. Sadatshojaie and M. R. Rahimpour, Current Trends and Future Developments on (Bio-) Membranes, Elsevier, 2020, 1-30.
4. I. Ganesh, Renew. Sustain. Energy Rev., 2016, 59, 1269-1297.
5. D. T. Whipple and P. J. A. Kenis, J. Phys. Chem. Lett., 2010, 1, 3451-3458.
6. J. Artz, T. E. Müller, K. Thenert, J. Kleinekorte, R. Meys, A. Sternberg, A. Bardow and W. Leitner, Chem. Rev., 2018, 118, 434-504.
7. A. S. Varela, N. Ranjbar Sahraie, J. Steinberg, W. Ju, H. S. Oh and P. Strasser, Angew. Chem., Int. Ed. 2015, 54, 10758-10762.
8. B. A. Rosen, A. Salehi-Khojin, M. R. Thorson, W. Zhu, D. T. Whipple, P. J. A. Kenis R. I. Masel, Science, 2011, 334, 643-644.
9. J. L. Qiao, Y. Y. Liu, F. Hong and J. J. Zhang, Chem. Soc. Rev. 2014, 43, 631-675.
10. W. Zhang, Y. Hu, L. Ma, G. Zhu, Y. Wang, X. Xue, R. Chen, S. Yang and Z. Jin, Adv. Sci., 2018, 5, 1700275.
11. H. Ooka, M. C. Figueiredo, and M. T. M. Koper, Langmuir, 2017, 33, 9307−9313.
12. K. J. P. Schouten, Y. Kwon, C. J. M. van der Ham, Z. Qin and M. T. M. Koper, Chem. Sci., 2011, 2, 1902-1909.
13. R. Kortlever, J. Shen, K. J. Schouten, F. Calle-Vallejo and and M. T. Koper, J. Phys. Chem. Lett., 2015, 6, 4073–4082.
14. F. Callo-Vallejo and M. T. M. Koper, Angew. Chem. Int. Ed., 2013, 52, 7282-7285.
15. Y. Hori, Mod. Asp. Electrochem. Springer, 2008, 42, 89-189.
16. L. R. L, Ting and B. S. Yeo, Curr. Opin. Electrochem., 2018, 8, 126-134.
17. C. Delacourt, P. L. Ridgway, and J. Newman, J. Electrochem. Soc., 2010, 157, B1902-B1910.
18. A. A. Peterson, F. Abild-Pedersen, F. Studt, J. Rossmeisl and J. K. Norskov, Energy Environ. Sci., 2010, 3, 1311–1315.
19. J. H. Zhou and Y. W. Zhang. React. Chem. Eng., 2018, 3, 591-625.
20. H. Li and C. Oloman, J. Appl. Electrochem., 2006, 36, 1105.
21. A. Javier, B. Chmielowiec, J. Sanabria-Chinchilla, Y. G. Kim, J. H. Baricuatro and M. P. Soriaga, Electrocatalysis, 2015, 6, 127-131.
22. B. Rezaei, M. Mokhtarianpour, A. A. Ensafi, Int. J. Hydrogen Energy, 2015, 40, 6754-6762.
23. D. Kong, J. J. Cha, H. Wang, H. R. Lee and Y. Cui, Energy Environ. Sci., 2013, 6, 3553-3558.
24. H. Xie, T. Wang, J. Liang, Q. Li and S. Sun, Nano Today, 2018, 21, 41-54.
25. T. K. Todorova, M. W. Schreiber and M. Fontecave, ACS Catal., 2020, 10, 1754-1768.
26. C. Cao and Z. Wen, J. CO2 Util., 2017, 22, 231-237.
27. H. Xiao, T. Cheng and W. A. Goddard, J. Am. Chem. Soc., 2017, 139, 130-136.
28. C. Wang, M. Cao, X. Jiang, M. Wang and Y. Shen, Electrochim. Acta, 2018, 271, 544-550.
29. X. Hou, Y. Cai, D. Zhang, L. Li, X. Zhang, Z. Zhu, L. Peng, Y. Liu and J. Qiao, J. Mater. Chem. A, 2019, 7, 3197-3205.
30. A. Vasileff, C. Xu, Y. Jiao, Y. Zheng and S. Z. Qiao, Chem, 2018, 4, 1809-1831.
31. D. Kim, J. Resasco, Y. Yu, A. M. Asiri and P. Yang, Nat. Commun., 2014, 5, 1-8.
32. X. Ma, Y. Shen, S. Yao, C. An, W. Zhang, J. Zhu, R. Si, C. Guo and C. An, J. Mater. Chem. A, 2020, 8, 3344-3350.
33. Q. Shao, P. Wang, S. Liu and X. Huang, J. Mater. Chem. A, 2019, 7, 20478-20493.
34. J. Ge, J. Long, Z. Sun, H. Feng, J. Hu, S. W. Koh, Q. Yu, J. Xiao and H. Li, ACS Appl. Energy Mater., 2019, 2, 6163-6169.
35. Z. Chang, S. Huo, W. Zhang, J. Fang and H. Wang, J. Phys. Chem. C, 2017, 121, 11368-11379.
36. F. Liu, C. Wu and S. Yang, J. Phys. Chem. C, 2017, 121, 22139-22146.
37. J. Ge, Z. Li, X. Hong and Y. Li, Chemistry-A European Journal, 2019, 25, 5113-5127.
38. R. Borup, J. Meyers, B. Pivovar, Y. S. Kim, R. Mukundan, N. Garland, D. Myers, M. Wilson, F. Garzon, D. Wood, P. Zelenay, K. More, K. Stroh, T. Zawodzinski, J. Boncella, J. E. McGrath, M. Inaba, K. Miyatake, M. Hori and N. Iwashita, Chem. Rev., 2007, 107, 3904-3951.
39. H. Tang, F. Liu, J. Wei, B. Qiao, K. Zhao, Y. Su, C. Jin, L. Li, J. Liu, J. Wang and T. Zhang, Angew. Chem. Int. Ed., 2016, 55, 10606-10611.
40. S. A. Akhade, W. Luo, X. Nie, N. J. Bernstein, A. Asthagiri and M. J. Janik, Phys. Chem. Chem. Phys., 2014, 16, 20429-20435.
41. M. Gangeri, S. Perathoner, S. Caudo, G. Centi, J. Amadou, D. Bégin, C. Pham-Huu, M. J. LedouX, J.-P. Tessonnier, D. S. Su and R. Schlögl, Catalysis Today, 2009, 143, 57-63.
42. B. Vanrenterghem, N. Hodnik, M. Bele, M. Šala, G. Amelinckx, S. Neukermans, R. Zaplotnik, G. Primc, M. Mozetič and T. Breugelmans, Chem. Commun., 2017, 53, 9340-9343.
43. S. Popović, M. Smiljanić, P. Jovanovič, J. Vavra, R. Buonsanti and N. Hodnik, Angew. Chem. Int. Ed., 2020, 18.
44. J. Huang, N. Hörmann, E. Oveisi, A. Loiudice, G. L. D. Gregorio, O. Andreussi, N. Marzari and R. Buonsanti, Nat. Commun., 2018, 9, 1-9.
45. K. Sun, T. Cheng, L. Wu, Y. Hu, J. Zhou, A. Maclennan, Z. Jiang, Y. Gao, W. A. Goddard and Z. Wang, J. Am. Chem. Soc., 2017, 139, 15608-15611.
46. T. F. Jaramillo, J. K. Nørskov, J. Varley, L. Grabow, and K. P. Kuhl, Gcep. Stanford. Edu, 2012, 1– 22.
47. P. Moreno-Garcí, N. Schlegel, A. Zanetti, A. C. López, M. d. J. Gálvez-Vázquez, A. Dutta, M. Rahaman and P. Broekmann, ACS Appl. Mater. Interfaces, 2018, 10, 31355-31365.
48. F. Quan, D. Zhong, H. Song, F. Jia and L. Zhang, J. Mater. Chem. A, 2015, 3, 16409-16413.
49. H. S. Jeon, I. Sinev, F. Scholten, N. J. Divins, I. Zegkinoglou, L. Pielsticker and B. R. Cuenya, J. Am. Chem. Soc., 2018, 140, 9383-9386.
50. H. S. Jeon, J. Timoshenko, F. Scholten, I. Sinev, A. Herzog, F. T. Haase and B. R. Cuenya, J. Am. Chem. Soc., 2019, 141, 19879-19887.
51. C. S. Chen, A. D. Handoko, J. H. Wan, L. Ma, D. Ren and B. S. Yeo, Catal. Sci. Technol., 2014, 5, 161-168.
52. L. Xiong, Z. Sun, X. Zhang, L. Zhao, P. Huang, X. Chen, H. Jin, H. Sun, Y. Lian, Z. Deng, M. H. Rümmerli, W. Yin, D. Zhang, S. Wang and Y. Peng, Nat. Commun., 2019, 10, 3782.
53. K. Liu, M. Ma, L. Wu, M. Valenti, D. Cardenas-Morcoso, J. P. Hofmann, J. Bisquert, S. Gimenez and W. A. Smith, ACS Appl. Mater. Interfaces, 2019, 11, 16546−16555.
54. Y. Yang, L. Jin, B. Liu, P. Kerns and J. He, Electrochim. Acta, 2018, 269, 441–451.
55. J. T. Feaster, C. Shi, E. R. Cave, T. Hatsukade, D. N. Abram, K. P. Kuhi, C. Hahn, J. K. Nørskov and T. F. Jaramilo, ACS Catal., 2017, 7, 4822-4827.
56. Y. Wang, J. Liu, Y. Wang, A. M. Ai-Enizi and G. Zheng, Small, 2017, 13, 1701809.
57. T. Hatsukade, K. P. Kuhl, E. R. Cave, D. N. Abram and T. F. Jaramilo, Phys. Chem. Chem. Phys., 2014, 16, 13814-13819.
58. J. Kim, J. T. Song, H. Ryoo, J. G. Kim, S. Y. Chung and J. Oh, J. Mater. Chem. A, 2018, 6, 5119-5128.
59. G. Yin, R. Kodiyath, S. Ueda, N. Srinivasan, A. Yamaguchi and M. Miyauchi, J. Mater. Chem. A, 2017, 5, 12113-12119.
60. W. Zhu, L. Zhang, P. Yang, C. Hu, H. Dong, Z. J. Zhao, R. Mu and J. Gong, ACS Energy Lett., 2018, 3, 2144-2149.
61. J. Zhou, D. Lan, S. Yang, Y. Guo, K. Yuan, L. Dai and Y. Zhang, Inorg. Chem. Front., 2018, 5, 1524-1532.
62. K. Chen, X. Zhang, T. Williams, L. Bourgeois, D.R. MacFarlane, Electrochim. Acta, 2017, 239, 84-89.
63. H. Mistrya, R. Reskec, P. Strasser, and B. Roldan Cuenya, Catalysis Today, 2018, 288, 30-36.
64. F. Urbain, P. Tang, N. M. Carretero, T. Andreu, J. Arbiol and J. R. Morante, ACS Appl. Mater. Interfaces, 2018, 10, 43650-43660.
65. L. R. L. Ting, O. Piqué, S. Y. Lim, M. Tanhaei, F. Calle-Vallejo and B. S. Yeo, ACS Catal., 2020, 10, 4059-4069.
66. C. Kim, H. S. Jeon, T. Eom, M. S. Jee, H. Kim, C. M. Friend, B. K. Min and Y. J. Hwang, J. Am. Chem. Soc., 2015, 137, 13844-13850.
67. F. Urbain, P. Tang, N. M. Carretero, T. Andreu, L. G. Gerling, C. Voz, J. Arbiol and J. R. Morante, Energy Environ. Sci., 2017, 10, 2256-2266.
68. B. Qin, Y. Li, H. Fu, H. Wang, S. Chen, Z. Liu and F. Peng, ACS Appl. Mater. Interfaces, 2018, 10, 20530-20539.
69. D. L. T. Nguyen, M. S. Jee, D. H. Won, H. S. Oh, B. K. Min and Y. J. Hwang, ACS Sustain. Chem. Eng., 2017, 5, 11377-11386.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2020-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明