博碩士論文 965203025 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:7 、訪客IP:3.133.131.168
姓名 林政平(Jheng-ping Lin)  查詢紙本館藏   畢業系所 通訊工程學系
論文名稱 結合Epipolar Geometry為基礎之視角間預測與快速畫面間預測方向決策之多視角視訊編碼
(Combining Epipolar Geometry Based Inter-view Prediction with Fast Inter Frame Direction Predictor for Multi-view Video Coding)
相關論文
★ 應用於車內視訊之光線適應性視訊壓縮編碼器設計★ 以粒子濾波法為基礎之改良式頭部追蹤系統
★ 應用於空間與CGS可調性視訊編碼器之快速模式決策演算法★ 應用於人臉表情辨識之強健式主動外觀模型搜尋演算法
★ 基於改良式可信度傳遞於同質區域之立體視覺匹配演算法★ 以階層式Boosting演算法為基礎之棒球軌跡辨識
★ 多視角視訊編碼之快速參考畫面方向決策★ 以線上統計為基礎應用於CGS可調式編碼器之快速模式決策
★ 適用於唇形辨識之改良式主動形狀模型匹配演算法★ 以運動補償模型為基礎之移動式平台物件追蹤
★ 基於匹配代價之非對稱式立體匹配遮蔽偵測★ 以動量為基礎之快速多視角視訊編碼模式決策
★ 應用於地點影像辨識之快速局部L-SVMs群體分類器★ 以高品質合成視角為導向之快速深度視訊編碼模式決策
★ 以運動補償模型為基礎之移動式相機多物件追蹤★ 基於匹配代價曲線特徵之遮蔽偵測之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 近年來,多視角視訊應用興起,提供了觀賞者新的視覺感受,因此多視角視訊壓縮技術成為傳輸與儲存多視角視訊的關鍵角色。相對於傳統視訊壓縮技術開發時間方向的資料多餘性,多視角視訊編碼器還可開發視角間方向的資料多餘性,但為了獲得最佳的編碼決策,龐大的運算量使得多視角視訊編碼器不易應用於即時系統。因此,本論文提出快速演算法加速多視角視訊編碼器,演算法分成兩個部分,快速畫面間預測方向決策及以epipolar geometry為基礎之視角間預測。快速畫面間預測方向決策藉由預測畫面內容編碼區塊之運動向量特性,快速決定區塊可能採用的預測方向。此外,本論文改良現有的epipolar geometry為基礎之視角間預測演算法,使用全域搜尋樣板,擴大視差向量搜尋範圍,提高視差向量估測精確度,並降低預測殘餘資訊,快速畫面間預測方向決策節省15%~24%的編碼時間,結合了本論文提出之Epipolar Geometry為基礎之視角間預測,當PSNR下降可接受情況下,整體編碼時間節省20%~28%,且獲得位元率下降0.6%~8.0%。
摘要(英) In recent years, various applications of multi-view video provide viewers a new viewing experience. Accordingly, multi-view video coding (MVC) plays a key role in transmission and storage of multi-view videos. However, besides temporal prediction which is used to reduce temporal redundancy, the MVC encoder also explores the inter-view redundancy by inter-view prediction. Because of the optimal decision of inter-view prediction and temporal prediction, the heavy computational load results in the difficulty of its realization in real-time systems. Therefore, this paper proposes a fast algorithm for the MVC encoder. There are two parts of our proposed scheme, fast inter frame direction predictor and epipolar geometry based inter-view prediction. The fast inter frame direction predictor decides the prediction direction that the current block may prefer, according to the motion characteristic of the current block inferred from the blocks in the neighboring frames. The epipolar geometry based inter-view prediction improves the accuracy of the location of matching blocks. Our experimental results show that the fast inter frame direction predictor reduces 15% to 24% of encoding time. By combining it with epipolar geometry based inter-view prediction, there is 20% to 28% of encoding time is reduced with the bitrate reduction ranging from 0.6% to 8.0%.
關鍵字(中) ★ 快速畫面間預測方向決策
★ 多視角視訊編碼
★ 以極線為基礎之視角間預測
關鍵字(英) ★ Multi-view Video Coding
★ Epipolar Geometry Based Inter-view Prediction
★ Fast Inter Frame Direction Predictor
論文目次 摘要.............................................................................................................................................................................Ⅰ
Abstract.......................................................................................................................................................................Ⅱ
誌謝.............................................................................................................................................................................Ⅲ
目錄.............................................................................................................................................................................Ⅳ
圖目錄.........................................................................................................................................................................Ⅵ
表目錄.........................................................................................................................................................................Ⅷ
第一章 緒論..................................................................................................................................................................1
1.1 前言.......................................................................................................................................................................1
1.2 研究動機................................................................................................................................................................2
1.3 研究方法................................................................................................................................................................2
1.4 論文架構................................................................................................................................................................3
第二章 多視角視訊編碼器介紹.....................................................................................................................................4
2.1 雙視角視訊編碼(Stereo Video Coding)概況..........................................................................................................4
2.2 多視角視訊編碼(Multi-View Video Coding)概況......................................................................................................7
2.3 多視角視訊編碼(Multi-View Video Coding)架構.....................................................................................................9
2.4 總結...................................................................................................................................................................10
第三章 快速多視角視訊編碼器之演算法介紹........................................................................................................11
3.1 時間方向的畫面間編碼加速演算法(Fast Algorithm for Temporal Direction Inter Frame Coding)...............11
3.2 視角間方向的畫面間編碼加速演算法(Fast Algorithm for Inter-view Direction Inter Frame Coding).............14
3.3 畫面間參考方向的快速決策演算法(Fast Algorithm for Direction Predictor of Inter Frame Prediction).......16
3.4 總結...................................................................................................................................................................17
第四章 本論文提出之快速多視角視訊編碼演算法................................................................................................18
4.1 本論文採用之快速多視角視訊編碼器架構......................................................................................................18
4.2 快速畫面間預測方向決策演算法.................................................................................................................20
4.2.1 區域動量特性與畫面預測方向之關係..........................................................................................................21
4.2.2 本論文提出之快速畫面間預測方向決策演算法................................................................................................24
4.3 以Epipolar geometry為基礎之視差估測演算法..................................................................................................29
4.3.1 Epipolar geometry之簡介..................................................................................................................29
4.3.2 本論文參考之Epipolar geometry為基礎之視差估測演算法.................................................30
4.3.3 本論文提出之Epipolar geometry為基礎之視差估測演算法.................................................32
4.4 總結................................................................................................................................................................36
第五章 實驗結果................................................................................................................................................................37
5.1 模擬環境與參數設定.......................................................................................................................................................37
5.2 快速畫面間預測方向決策演算法實驗結果...........................................................................................................................40
5.3 Epipolar geometry為基礎之視差估測演算法實驗結果........................................................................45
5.4 結合Epipolar Geometry為基礎之視角間預測與快速畫面間預測方向決策之實驗結果...............................55
第六章 結論及未來展望....................................................................................................................59
6.1 結論.................................................................................................................................................................59
6.2 未來展望.............................................................................................................59
參考文獻.......................................................................................................................................................................61
參考文獻 [1] G. K. Wallace, “The JPEG still picture compression standard,” IEEE Transactions on Consumer Electronics, vol. 38, no. 1, pp.18-34, Feb. 1992.
[2] M. Rabbani and R. Joshi, “An overview of the JPEG 2000 still image compression standard,” Signal Processing: Image Communication, vol. 17, no 1, pp. 3-48, Jan. 2002.
[3] Coding of audio-visual objects–Part 2: Visual, ISO/IEC 14492-2 (MPEG-4 Visual), ISO/IEC JVC 1, Version 1: Apr. 1999, Version 2: Feb. 2000, Version 3: May 2004.
[4] T. Wiegand, G. J. Sullivan, G. Bjontegaard and A. Luthra, “Overview of the H.264/AVC video coding standard,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 13, no.7, pp. 560-576, July 2003.
[5] H. Kalva, L. Christodoulou, L. Mayron, O. Marques and B. Furht, “Challenges and opportunities in video coding for 3D TV,” IEEE International Conference on Multimedia and Expo, pp.1689-1692, July 2006.
[6] Y.-S. Ho and K.-J. Oh, “Overview of multi-view video coding,” IEEE International Workshop on Signal, System, and Image Processing, pp. 5-12, June 2007.
[7] Y. Wang, J. Ostermann and Y.-Q. Zhang, “Video processing and communication,” Pearson Education Taiwan Ltd., Sep. 2007.
[8] ISO/IEC. IS 13818-2 AMD3: MPEG-2 multiview profile, Sept. 1996.
[9] W. Yang and N. K. Ngi, ” MPEG-4 based stereoscopic video sequences encoder,” IEEE International Conference on Acoustics, Speech, and Signal Processing, vol. 3, pp. 741-744, May 2004.
[10] ISO/IEC JTC/1 SC29/WG11 and ITU-T SG16 Q.6, “JMVM 1.0 software,” JTV-T209, July 2006.
[11] X. San, H. Cai, J.-G. Lou and J. Li, “Multiview image coding based on geometric prediction,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no.11, pp. 1536-1548, Nov. 2007.
[12] S. Cho, K. Yun, B. Bae and Y. Hahm, “Disparity-compensated coding using MAC for stereoscopic video,” IEEE International Conference on Consumer Electronics, pp. 170-171, June 2003.
[13] L. Stelmach, W. J. Tam, D. Meegan and A. Vincent, ”Stereo image quality: effects of mixed spatio-temporal resolution,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 10, no.2, pp. 188-193, March 2000.
[14] ISO/IEC JTC/1 SC29/WG11 and ITU-T SG16 Q.6, “JMVC 1.0 software,” JTV-AA212, April 2008.
[15] Joint Video Team (JVT) of ISO/IEC MPEG & ITU-T VCEC, JVT-V132, “Comparative study of MVC prediction structures,” Jan. 2007.
[16] L. N. Ma and F. Pan, “Efficient compression of multi-view video using hierarchical B pictures,” IEEE International Conference on Multimedia and Ubiquitous Engineering, pp. 118-121, April 2008.
[17] M. Yu, Z. Peng, W. Liu, F. Shao, G. Jiang and Y.-D. Kim, “Fast macroblock selection algorithm for multiview video coding based on inter-view global disparity,” Congress on Image and Signal Processing, pp. 575-578, May 2008.
[18] L.-F. Ding, P.-K. Tsung, W.-Y. Chen, S.-Y. Chien and L.-G. Chen, “Fast motion estimation with inter-view motion vector prediction for stereo and multiview video coding,” IEEE International Conference on Acoustics, Speech and Signal Processing, pp. 1373-1376, March 2008.
[19] Y. Kim, J. Kim and K. Sohn, “Fast disparity and motion estimation for multi-view video coding,” IEEE Transactions on Consumer Electronics, vol. 53, no. 2, pp. 712-719, May 2007.
[20] X. Li, D. Zhao, S. Ma and W. Gao, “Fast disparity and motion estimation based on correlations for multiview video coding,” IEEE Transactions on Consumer Electronics, vol. 54, no. 4, pp. 2037-2044, Nov. 2008.
[21] X. M. Li, D. B. Zhao, X. Y. Ji, Q. Wang and W. Gao, “A fast inter frame prediction algorithm for multi-view video coding,” IEEE International Conference on Image Processing, vol. 3, pp. 417-420, Oct. 2007.
[22] J. Lu, H. Cai, J.-G. Lou and J. Li, “An epipolar geometry-based fast disparity estimation algorithm for multiview image and video coding,” IEEE Transactions on Circuits and Systems for Video Technology, vol. 17, no.6, pp. 737-750, June 2007.
[23] X. Xu and Y. He, “Fast disparity motion estimation in MVC based on range prediction,” IEEE International Conference on Image Processing, pp. 2000-2003, Oct. 2008.
[24] Z. Zhang, “Determining the Epipolar Geometry and its Uncertainty: A Review,” International Journal of Computer Vision, vol. 27, no.2, pp. 161–195, Mar. 1998.
[25] M. Sonka, V. Hlavac and R. Boyle, Image processing analysis, and machine vision 3rd, Thomson Learning part of the Thomson Corporation, Mar. 2009.
[26] R. Hartley and A. Zisserman, Multiple view geometry in computer vision, Cambridge University Press, April 2004.
[27] K. Hata and M. Etoh, ” Epipolar geometry estimation and its application to image coding,” IEEE International Conference on Image Processing, vol. 2, pp. 472-476, Oct. 1999.
[28] J. Lu, H. Cai, J.-G. Lou and J. Li, “An effective epipolar geometry assisted motion estimation technique for multi-view image and video coding,” IEEE International Conference on Image Processing, pp. 1089-1092, Oct. 1999.
指導教授 唐之瑋(Chih-wei Tang) 審核日期 2009-7-17
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明