博碩士論文 107329012 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:22 、訪客IP:18.116.12.132
姓名 張嘉文(Chia-Wen Chang)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 雙金屬鉑鈀及三金屬鉑鈀基奈米團簇觸媒應用 於析氫反應之研究
(The Hydrogen Evolution Reaction Performance of Bimetallic Pt x Pd y and Trimetallic PtPdM Nanoclusters Catalysts)
相關論文
★ 高效能直接甲醇燃料電池陽極觸媒之製備、改質與鑑定研究★ 金-白金陰極催化劑應用於氧氣還原反應之製備與鑑定:金合金化以及氧化鈰添加之提升效應
★ 利用熱處理改質引發表面偏析現象以增進鉑釕觸媒之甲醇氧化反應活性★ 藉添加鈀鎳與鈀鈷合金觸媒提升氮化鋰的氫化性質
★ 鉑釕觸媒應用於乙醇氧化反應之結構與活性關係研究:錫的添加和氧化處理之提升效應★ 硼氫化鋰脫氫性質之研究:以添加鈀氫氧化鎳觸媒提升其脫氫反應
★ 表面活性劑對硒化鎘及硒化鋅鎘奈米合金在高溫有機金屬製程中的效應★ 鈀銅觸媒應用於鹼性溶液中之乙醇氧化反應其結構與活性關係研究
★ 鈀鈷添加物對於硼氫化鋰及鋰硼氮氫四元化合物脫氫性質之提升效應★ 成長溫度及配位體比例對硒化鋅鎘量子點光學性質的效應
★ 製備、改質及鑑定高效能鈀鈷觸媒應用於陰極氧還原反應★ 金屬(鈰、鈷、錫)氯化物和氧化物的添加對於硼氫化鋰脫氫性質之提升效應
★ 界面活性劑比例及沉澱現象對硒化鎘量子點光學性質的效應★ 雙元鉑基合金奈米顆粒及奈米棒之製備及其應用於氧氣還原反應
★ 錳的添加對於鉑鈷觸媒氧氣還原活性提升效應★ 鈀金鎳觸媒在鹼性乙醇氧化環境下結構與活性的關係
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 白金基的奈米顆粒(nanoparticles, NPs)由於優異的效能而被應用於析氫反應(hydrogen evolution reaction, HER),但是由於白金的高成本以及白金奈米顆粒的利用率較低,而在析氫應用上受到限制。因此降低白金奈米顆粒的尺寸以及提高其利用率為析氫應用的關鍵。為了解決上述問題,本研究以沉澱沉積法(deposition-precipitationmethod) 製備碳支撐的 Pt-奈米團簇(nanocluster, NCs)、Pt-單原(single atoms, SAs),Pd-NCs、Pd-SAs,PtxPdy-NCs(x/y= 1/2, 1/1,及2/1),以及PtPdM-NCs(M= Sn 或 Ni)。所製備觸媒之電化學性質、形貌、結構、表面組成、化學組成以及觸媒微結構分別使用旋轉盤電極 (rotating disk electrode, RDE)、高角度環形暗場相掃描電子顯微鏡(high angle annular dark-Field scanning transmission electron microscopy, HAADF STEM)/高 解 析穿透式電子顯微鏡(high resolution transmission electron microscopy, HR-TEM)、X光繞射儀(X-ray diffraction, XRD)、光電子能譜儀(X-ray photoelectron spectroscopy, XPS)、感應耦合電漿原子發射光譜分析儀(inductively coupled plasma-optical emission spectrometer, ICP-OES)以及X光吸收光譜(X-ray absorption spectroscopy, XAS)等儀器鑑定。本研究為三個部分,在第一部份製備 Pt-NCs、Pt-NCs、Pd-NCs、以及Pd-SAs 並與Pt-NPs及Pd-NPs 比較其HER效能,其中又以Pt-NCs以及Pt-SAs展示了最佳的HER效能,其質量活性在-0.05 V的電位下分別為1.3及10.6 A/mgPt,優於Pt-NPs (在-0.05 V的質量活性為0.3 A/mgPt ),此乃因奈米團簇及單原子具有較高白金利用率。但是Pt-NCs以及Pt-SAs在經過12小時計時電流試驗後,其質量活性的衰退分別為39以及65%。為了提升觸媒之HER穩定性,在第二部分的研究製備了雙金屬PtxPdy-NCs。其中又以PtPd-NCs展示了最佳的HER穩定度,其質量活性及其在12小時的計時電流試驗後的衰退分別為9.56 A/mgPt 以及19 %,此結果說明Pd的添加以及類核/殼結構可以顯著的增加Pt基觸媒的穩定度。為了近一步提升觸媒的穩定度,本研究製備了三元PtPdM-NCs觸媒,其中又以PtPdNi-NCs具有最佳的穩定度,其質量活性在經過12小計時電流試驗後衰退12 %。
摘要(英) Pt and Pt-based nanoparticles (NPs) are wildly used as the electrocatalysts for the hydrogen evolution reaction (HER). However, the application of the Pt-based catalysts has the limitation due to its high cost and low utilization of Pt. Therefore, downsizing the catalysts is the key factor for the promotion of the HER performance. In order to solve those problem, in this study, carbon-supported Pt-nanoclusters (NCs), Pd-NCs, Pt-single atoms (SAs), Pd-SAs, PtxPdy-NCs (x/y= 1/2, 1/1, and 2/1), and PtPdM-NCs (M= Sn or Ni) are prepared by deposition-precipitation method. The electrochemical properties, morphologies (dark/ bright-fields), structures, surface compositions, chemical compositions and the microstructure of the catalysts are analyzed by rotating disc electrode (RDE), high angle annular dark-field scanning transmission electron microscopy (HAADF-STEM)/high resolution transmission electron microscopy (HR-TEM), X-ray diffraction (XRD), X-ray photoelectron spectroscopy (XPS), Inductively coupled plasma‒optical emission spectroscopy (ICP-OES), and X-ray absorption spectroscopy (XAS), respectively.
This study is divided into three parts. In the first part, Pt-NCs, Pd-NCs, Pt-SAs, and Pd-SAs are synthesized and their HER performance are compared with those of Pt-NPs and Pd-NPs. Pt-NCs and Pt-SAs exhibit the excellent HER performance with the mass activity at -0.05 V (MA0.05) of 1.3 and 10.6 A/mgPt, better than Pt-NPs (with MA0.05 of 0.3 A/mgPt) due to the small size and high Pt utilization. However, after chronoamperometry (CA) test for 12 hours, Pt-NCs and Pt-SAs show poor HER stability with the MA0.05 decay of 39 and 65 %, respectively.
In order to improve the HER stability, in the second part the bimetallic PtxPdy-NCs are prepared, and the PtPd-NCs exhibit the excellent HER performance with the MA0.05 and MA0.05 decay of 9.57 A/mgPt and 19 %, respectively, showing that the Pd addition can improve the HER stability.
In the third part, the PtPdM-NCs are prepared to further improve the HER stability, and the PtPdNi-NCs show the best HER stability with the MA0.05 decay of 12 %.
關鍵字(中) ★ 析氫反應
★ 鉑鈀觸媒
★ 奈米團簇
★ 單原子
★ 質量活性
★ 穩定性
★ 計時電流法
關鍵字(英) ★ hydrogen evolution reaction (HER)
★ PtPd catalysts
★ nanoclusters
★ single atoms
★ mass activity
★ stability
★ chronoamperometry
論文目次 摘要 I
Abstract III
致謝 V
Table of Contents IX
List of Figures XII
List of Table XV
Chpater 1 Introduction 1
1.1 The mechanism of HER 2
1.2 The kinetics of HER 4
1.3 The Pt-based eletrocatalysts and size-dependent HER performance 7
1.4 Motivation and approach 13
Chpater 2 Experimental Section 14
2.1 Preparation of catalysts 14
2.1.1 Preparation of carbon-supported Pt-SAs, Pt-NCs, Pd4-SAs, and Pd-NCs catalysts 14
2.1.2 Preparation of carbon-supported PtxPdy-NCs catalysts 14
2.1.3 Preparation of carbon-supported PtPdM catalysts 18
2.2 Characterization of catalysts 20
2.2.1 Inductively coupled plasma‒optical emission spectroscopy (ICP-OES) 20
2.2.2 X-ray diffraction (XRD) 20
2.2.3 X-ray absorption spectroscopy (XAS) 20
2.2.4 High-resolution transmission electron microscopy (HR-TEM) 23
2.2.5 X-ray photoelectron spectroscopy (XPS) 23
2.2.6 Cyclic voltammetry (CV) 24
2.2.7 HER performance 24
2.2.8 Chronoamperometry (CA) 25
2.2.9 Electrochemical Impedance Spectroscopy (EIS) 25
Chpater 3 Results and Discussion 27
3.1 The HER performance of the Pt and Pd NPs, NCs, and SAs. 27
3.1.1 ICP-OEC and CV characterizations 27
3.1.2 LSV characterization 27
3.1.3 Summary 31
3.2 The HER performance of the PtxPdy-NCs catalysts. 34
3.2.1 ICP-OES and HR-TEM characterizations 34
3.2.2 XRD characterization 34
3.2.3 XAS characterization 39
3.2.4 XPS characterization 47
3.2.5 CV characterization 47
3.2.6 LSV and CA characterization 51
3.2.7 EIS characterization 54
3.2.8 Summary 58
3.3 The HER performance of the PtPdM-NCs catalysts. 60
3.3.1 ICP-OES and HR-TEM characterizations 60
3.3.2 XRD characterizations 60
3.3.3 CV characterization 60
3.3.4 LSV and CA characterization 65
3.3.5 Summary 69
Chpater 4 Conclusions 72
Reference 73
參考文獻 1. I. Chorkendorff and J. W. Niemantsverdriet, Concepts of modern catalysis and kinetics. 2017: John Wiley & Sons.
2. R. Subbaraman, D. Tripkovic, D. Strmcnik, K. C. Chang, M. Uchimura, A. P. Paulikas, V. Stamenkovic, and N. M. Markovic, Science, 2011, 334, 1256-1260.
3. R. Subbaraman, D. Tripkovic, K.-C. Chang, D. Strmcnik, A. P. Paulikas, P. Hirunsit, M. Chan, J. Greeley, V. Stamenkovic, and N. M. Markovic, Nat. Mater., 2012, 11, 550-557.
4. B. Conway and B. Tilak, Electrochimi. Acta, 2002, 47, 3571-3594.
5. A. Kahyarian, B. Brown, and S. Nesic, J. Electrochem. Soc., 2017, 164, 365-374.
6. J. Wang, H. Zhang, and X. Wang, Small Methods, 2017, 1, 1700118.
7. B. Qiao, A. Wang, X. Yang, L. F. Allard, Z. Jiang, Y. Cui, J. Liu, J. Li, and T. Zhang, Nat. Chem., 2011, 3, 634.
8. S. Abbet, A. Sanchez, U. Heiz, W.-D. Schneider, A. M. Ferrari, G. Pacchioni, and N. Rösch, J. Am. Chem. Soc., 2000, 122, 3453-3457.
9. A. Lasia, Int. J. Hydrog. Energy, 2019, 44, 19484-19518.
10. A. J. Bard and L. R. Faulkner, Electrochemical Methods: Fundamentals and Applications. 2nd ed. 2000: Wiley.
11. P. Quaino, F. Juarez, E. Santos, and W. Schmickler, Beilstein J. Nanotechnol., 2014, 5, 846-854.
12. S. Trasatti, J. Electroanal. Chem. Interfacial Electrochem., 1972, 39, 163-184.
13. P. Wu, P. Du, H. Zhang, and C. Cai, Phys. Chem. Chem. Phys., 2015, 17, 1441-1449.
14. D. V. Esposito, S. T. Hunt, A. L. Stottlemyer, K. D. Dobson, B. E. McCandless, R. W. Birkmire, and J. G. Chen, Angew. Chem. Int. Ed., 2010, 49, 9859-9862.
15. X. F. Yang, A. Wang, B. Qiao, J. Li, J. Liu, and T. Zhang, Acc. Chem. Res., 2013, 46, 1740-1748.
16. S. F. Hackett, R. M. Brydson, M. H. Gass, I. Harvey, A. D. Newman, K. Wilson, and A. F. Lee, Angew. Chem. Int. Ed., 2007, 46, 8593-8596.
17. Q. Fu, H. Saltsburg, and M. Flytzani-Stephanopoulos, Science, 2003, 301, 935-938.
18. M. Yang, L. F. Allard, and M. Flytzani Stephanopoulos, J. Am. Chem. Soc., 2013, 135, 3768-3771.
19. X. Zhang, H. Shi, and B. Q. Xu, Angew. Chem. Int. Ed., 2005, 44, 7132-7135.
20. R. Van Hardeveld and F. Hartog, Surf. Sci. Rep., 1969, 15, 189-230.
21. N. Lopez, T. Janssens, B. Clausen, Y. Xu, M. Mavrikakis, T. Bligaard, and J. K. Nørskov, J. Catal., 2004, 223, 232-235.
22. M. Valden, X. Lai, and D. W. Goodman, Science, 1998, 281, 1647-1650.
23. J. Li, X. Li, H. J. Zhai, and L. S. Wang, Science, 2003, 299, 864-867.
24. B. Yoon, H. Häkkinen, U. Landman, A. S. Wörz, J. M. Antonietti, S. Abbet, K. Judai, and U. Heiz, Science, 2005, 307, 403-407.
25. C. T. Campbell, Nat. Chem., 2012, 4, 597-598.
26. M. Boronat, A. Leyva Pérez, and A. Corma, Acc. Chem. Res., 2014, 47, 834-844.
27. L. Liu and A. Corma, Chem. Rev., 2018, 118, 4981-5079.
28. D. Buceta, Y. Piñeiro, C. Vázquez Vázquez, J. Rivas, and M. A. López Quintela, Catalysts, 2014, 4, 356-374.
29. K. L. Kelly, E. Coronado, L. L. Zhao, and G. C. Schatz, The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment. 2003, ACS Publications.
30. N. Cheng, S. Stambula, D. Wang, M. N. Banis, J. Liu, A. Riese, B. Xiao, R. Li, T. K. Sham, and L. M. Liu, Nat. Commun., 2016, 7, 1-9.
31. S. Sun, G. Zhang, N. Gauquelin, N. Chen, J. Zhou, S. Yang, W. Chen, X. Meng, D. Geng, and M. N. Banis, Sci. Rep., 2013, 3, 1-9.
32. Z. Liu, L. Hong, M. P. Tham, T. H. Lim, and H. Jiang, J. Power Sources, 2006, 161, 831-835.
33. J. Liu, M. Jiao, L. Lu, H. M. Barkholtz, Y. Li, Y. Wang, L. Jiang, Z. Wu, D. j. Liu, and L. Zhuang, Nat. Commun., 2017, 8, 1-10.
34. Y. Lu, Y. Jiang, H. Wu, and W. Chen, J. Phys. Chem. C, 2013, 117, 2926-2938.
35. X. Huang, H. Zhang, C. Guo, Z. Zhou, and N. Zheng, Angew. Chem. Int. Ed., 2009, 48, 4808-4812.
36. S. Lai, C. Fu, Y. Chen, X. Yu, X. Lai, C. Ye, and J. Hu, J. Power Sources, 2015, 274, 604-610.
37. K. Hayamizu and Y. Aihara, J. Phys. Chem. Lett., 2010, 1, 2055-2058.
38. X. Zhong, Y. Qin, X. Chen, W. Xu, G. Zhuang, X. Li, and J. Wang, Carbon, 2017, 114, 740-748.
39. E. Gileadi, Electrode kinetics for chemists, chemical engineers, and materials scientists. 1993: Capstone.
40. M. A. Dominguez-Crespo, E. Ramírez-Meneses, A. M. Torres-Huerta, V. Garibay-Febles, and K. Philippot, Int. J. Hydrog. Energy, 2012, 37, 4798-4811.
41. R. Armstrong, J. Electroanal. Chem., 1972, 39, 81-90.
42. D. A. Harrington and B. Conway, Electrochimi. Acta, 1987, 32, 1703-1712.
43. B. Losiewicz, A. Budniok, E. Rowinski, E. Lagiewka, and A. Lasia, Int. J. Hydrog. Energy, 2004, 29, 145-157.
44. A. Krolikowski and A. Wiecko, Electrochimi. Acta, 2002, 47, 2065-2069.
45. P. Wang, K. Jiang, G. Wang, J. Yao, and X. Huang, Angew. Chem. Int. Ed., 2016, 55, 12859-12863.
46. D. Hou, W. Zhou, X. Liu, K. Zhou, J. Xie, G. Li, and S. Chen, Electrochimi. Acta, 2015, 166, 26-31.
47. R. Ojani, J. B. Raoof, and E. Hasheminejad, Int. J. Hydrog. Energy, 2013, 38, 92-99.
48. X. Huang, Z. Zeng, S. Bao, M. Wang, X. Qi, Z. Fan, and H. Zhang, Nat. Commun., 2013, 4, 1-8.
49. J. Deng, H. Li, J. Xiao, Y. Tu, D. Deng, H. Yang, H. Tian, J. Li, P. Ren, and X. Bao, Energy Environ. Sci., 2015, 8, 1594-1601.
50. J. Su, R. Ge, Y. Dong, F. Hao, and L. Chen, J. Mater. Chem. A, 2018, 6, 14025-14042.
51. H. Zhang, P. An, W. Zhou, B. Y. Guan, P. Zhang, J. Dong, and X. W. D. Lou, Sci. Adv., 2018, 4, 6657.
52. Y. Feng, Y. Guan, H. Zhang, Z. Huang, J. Li, Z. Jiang, X. Gu, and Y. Wang, J. Mater. Chem. A, 2018, 6, 11783-11789.
53. J. Zhang, Y. Zhao, X. Guo, C. Chen, C. L. Dong, R. S. Liu, C. P. Han, Y. Li, Y. Gogotsi, and G. Wang, Nat. Catal., 2018, 1, 985-992.
54. K. Li, Y. Li, Y. Wang, J. Ge, C. Liu, and W. Xing, Energy Environ. Sci., 2018, 11, 1232-1239.
55. J. J. Feng, L. X. Chen, P. Song, X. l. Wu, A. J. Wang, and J. Yuan, Int. J. Hydrog. Energy, 2016, 41, 8839-8846.
指導教授 王冠文(Kuan-Wen Wang) 審核日期 2020-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明