博碩士論文 107622010 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:24 、訪客IP:3.145.177.210
姓名 蕭立揚(Hsiao Li-Yang)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 利用GPS與InSAR觀測資料及塊體模型探討台灣西南部活動斷層的震間行為
(Intreseismic fault behavior in southwestern Taiwan from GPS and InSAR observations and block model)
相關論文
★ 利用GPS觀測資料探討台北地區之地殼變形★ 台灣地區大型地震前後地震活動率與庫倫應力的關係
★ GPS時間序列的雜訊分析-美國東盆嶺及黃石蛇河平原觀測網★ 利用永久性散射體差分干涉法探討台南地區之地殼形變
★ 台灣中部埔里盆地的構造活動: 衛星遙測和野外觀測★ 利用GPS同震位移資料逆推震源機制
★ 岩石熱導率及其物理性質之經驗關係式研究:以台灣晚期中生代至新生代沉積岩為例★ 利用測地資料分析花東縱谷北段之地殼變形
★ 2012霧台地震同震變形及震源區應力狀態分析★ 1999 集集地震震後滑移與黏彈性變形之線性反演分析
★ 應用雷達差分干涉技術測量印度庫曼南部地表變形★ 利用GPS觀測資料及塊體模型來探討台灣的地殼變形
★ 利用GPS觀測資料及塊體模型分析台灣中部及北部地區地殼變形★ 結合衛星雷達與GPS觀測資料分析北台灣地表變形
★ 利用氣象局新一代井下地震監測網分析台灣地區淺層構造場址放大效應★ 臺灣中部晚期中新世至更新世二氧化碳 儲集層及蓋層之地層暨礦物組成研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 台灣位處板塊邊界,受到菲律賓海板塊向歐亞大陸板塊快速聚合的影響,有分佈密集的活動斷層與頻繁的地震。近十年以來又以台灣西南部地區在2016年發生的美濃地震造成的災情最為嚴重。本研究針對中央地質調查所公佈,位於台灣西南部地區的8條活動斷層,利用衛星、雷達資料及三維塊體模型方法DEFNODE估算其震間活動情形,以協助地震災害風險之評估。為觀察斷層的震間滑移隨時間改變的差異,以2016年美濃地震為分界,本研究將2002年至2019年所累積的GPS觀測資料分為代表發震前2002年初至2015底與可能受到震後影響的2016年初至2019年9月底等兩組資料。此外本研究亦嘗試在三維塊體模型中引入鉛直向GPS與PS-InSAR資料,希望能夠藉此分析高傾角斷層造成的地表抬升與下陷。
模型結果顯示,在美濃地震前後,左鎮、旗山與恆春斷層的平均滑移速率有大於10 mm/yr的差異,且其中左鎮與旗山斷層僅與震央相距十幾公里。雖然目前無法確認滑移速率的改變是否與地震事件有直接關聯,但本研究已成功觀察到斷層活動情形隨時間的改變的現象。GPS及PS-InSAR資料聯合反演模型的結果則顯示,鉛直向GPS速度資料可能受到過多斷層活動以外的事件影響,難以被塊體模型所擬合,也因此鉛直向GPS速度資料對斷層滑移速率估算的影響非常有限。另一方面,PS-InSAR資料僅在左鎮斷層周邊有較大的殘差分佈,與GPS資料整合時的修正值很可能是此殘差分佈的主因。斷層滑移速率之結果則顯示,PS-InSAR資料可以協助降低僅用GPS觀測資料時被高估的斷層滑移速率。整體來說,本研究認為在引入鉛直向地表變形時,須注意模型擬合結果與殘差分佈,避免受到過多非斷層活動之地表變形的干擾。
摘要(英) Located on the plate boundary between the Philippine Sea Plate and the continental margin of Eurasian Plate, Taiwan has experienced rapid convergence which leads to densely distributed active faults and frequent earthquakes. In the past ten years, for example, the 2016 Meinong earthquake occurred in southwestern Taiwan caused the most serious disaster. This study focused on analyzing eight active faults in southwestern Taiwan published by the Central Geological Survey. By integrating GPS and PS-InSAR data and implementing the three-dimensional block model method DEFNODE, this study estimated the interseismic slip rates of these faults that can be further applied to the probability seismic hazard analysis. Different form previous interseismic block models that primarily used average horizontal velocities, this study tried to incorporate PS-InSAR and vertical GPS data to model the interseismic surface uplift or subsidence caused by dip-slip faults. Results show that the GPS vertical motion was poorly fitted by block models, which may be due to unmodeled non-faulting mechanisms such as active folding. Integration of GPS and PS-InSAR observations, on the other hand, can notably affect the modeling results where velocity residuals were greatly reduced and long-term slip rates on some faults become more reasonable than the GPS-only results.
This study further examined possible influence of the 2016 Meinong earthquake on interseismic slip rates of adjacent faults by dividing the GPS data into two groups: the “pre-Meinong” data from 2002 to 2015 and the “post-Meinong” data from 2016 to September 2019. Results show that slip rates of the Zuozhen, Chishan and Hengchun faults are more than 10 mm/yr faster than those before the earthquake, where the Zuozhen and Chishan faults are only 10-20 km away from the epicenter. Although whether these changes in slip rates are directly related to the Meinong event remains debated, the model results reveal possible temporal variations of fault behavior.
關鍵字(中) ★ 台灣西南部
★ 活動斷層
★ 全球定位系統
★ 合成孔徑雷達干涉圖
★ 塊體模型
關鍵字(英) ★ GPS
★ InSAR
★ Taiwan
★ block model
★ active fault
論文目次 中文摘要 I
英文摘要 II
致謝 IV
圖目錄 VII
表目錄 IX
第一章、序論 - 1 -
1-1 研究動機與目的 - 1 -
1-2 前人研究 - 2 -
1-3 本文內容 - 3 -
第二章、地質背景概述 - 6 -
2-1 台灣西南部地質背景 - 6 -
2-2 台灣西南部活動斷層 - 6 -
第三章、測地資料分析與整合 - 13 -
3-1 GPS資料處理 - 13 -
3-2 GPS時間序列分析 - 14 -
3-3 PS-InSAR資料處理 - 17 -
3-4 GPS與InSAR資料整合 - 18 -
第四章、模型原理與結果 - 38 -
4-1 塊體模型原理 - 38 -
4-2 塊體模型建構 - 40 -
4-2.1. 塊體邊界劃定 - 40 -
4-2.2. 斷層參數設置 - 41 -
4-2.3. 模型資料選用 - 41 -
4-2.4. 塊體運動初步估算 - 41 -
4-2.5. 塊體內部變形 - 42 -
4-2.6. 地質資料約束 - 42 -
4-3 模型各步驟結果檢視 - 43 -
4-3.1. 剛體模型與塊體內部變形 - 44 -
4-3.2. 地質資料約束之影響 - 44 -
4-4 美濃震前模型結果 - 45 -
4-4.1. 地表速度場估算結果 - 45 -
4-4.2. 塊體內部應變率估算 - 45 -
4-4.3. 斷層活動情形估算 - 46 -
4-5 美濃震後模型結果 - 46 -
4-5.1. 地表速度場估算結果 - 46 -
4-5.2. 塊體內部應變率估算 - 47 -
4-5.3. 斷層活動情形估算 - 47 -
4-6 GPS及InSAR聯合反演模型結果 - 48 -
4-6.1. 地表速度場擬合 - 48 -
4-6.2. 斷層活動情形估算 - 49 -
第五章、討論 - 76 -
5-1 鉛直向地表運動對斷層模型的影響 - 76 -
5-1.1. 鉛直向GPS速度場對結果之影響 - 76 -
5-1.2. PS-InSAR資料對結果之影響 - 77 -
5-1.3. 測地資料組合結果比較 - 78 -
5-2 斷層活動隨時間之改變 - 79 -
5-2.1. 地表速度場差異 - 79 -
5-2.2. 模型結果比較 - 79 -
第六章、結論 - 83 -
參考文獻 - 84 -
附錄A - 92 -
附錄B - 118 -
附錄C - 135 -
參考文獻 Angelier, J., Barrier, E., & Hao Tsu Chu. (1986). Plate collision and paleostress trajectories in a fold-thrust belt: The foothills of Taiwan. Tectonophysics, 125(1–3), 161–178. https://doi.org/10.1016/0040-1951(86)90012-0
Bagnardi, M., & Hooper, A. (2018). Inversion of Surface Deformation Data for Rapid Estimates of Source Parameters and Uncertainties: A Bayesian Approach. Geochemistry, Geophysics, Geosystems, 19(7), 2194–2211.
https://doi.org/10.1029/2018GC007585
Béon, M. L., Huang, M.-H., Suppe, J., Huang, S.-T., Pathier, E., Huang, W.-J., et al. (2017). Shallow geological structures triggered during the Mw 6.4 Meinong earthquake, southwestern Taiwan. Terrestrial, Atmospheric and Oceanic Sciences, 28(5), 663–681. https://doi.org/10.3319/TAO.2017.03.20.02
Chang, W., Ching, K., Lee, C., Lee, Y., & Lee, C. (2016). Earthquake Potential of Active Faults in Taiwan from GPS Observations and Block Modeling. Seismological Research Letters, 87(6), 1274–1286. https://doi.org/10.1785/0220160094
Chen, S.-C., Hsu, S.-K., Wang, Y., Chung, S.-H., Chen, P.-C., Tsai, C.-H., et al. (2014). Distribution and characters of the mud diapirs and mud volcanoes off southwest Taiwan. Journal of Asian Earth Sciences, 92, 201–214.
https://doi.org/10.1016/j.jseaes.2013.10.009
Cheng, W. B., Hsu, S. K., & Chang, C. H. (2012). Tomography of the southern Taiwan subduction zone and possible emplacement of crustal rocks into the forearc mantle. Global and Planetary Change, 90–91, 20–28.
https://doi.org/10.1016/j.gloplacha.2012.01.003
Ching, K.-E., Rau, R.-J., Johnson, K. M., Lee, J.-C., & Hu, J.-C. (2011). Present-day kinematics of active mountain building in Taiwan from GPS observations during 1995–2005. Journal of Geophysical Research, 116(B9), B09405.
https://doi.org/10.1029/2010JB008058
Ching, K.-E., Gourley, J. R., Lee, Y.-H., Hsu, S.-C., Chen, K.-H., & Chen, C.-L. (2016). Rapid deformation rates due to development of diapiric anticline in southwestern Taiwan from geodetic observations. Tectonophysics, 692, 241–251.
https://doi.org/10.1016/j.tecto.2015.07.020
Dach, R., U. Hugentobler, P. Fridez and M. Meindi (Eds.), (2007) Bernese GPS software Version 5.0, Astronomical Institute, University of Berne, 612 pp.
Decriem, J., Árnadóttir, T., Hooper, A., Geirsson, H., Sigmundsson, F., Keiding, M., et al. (2010). The 2008 May 29 earthquake doublet in SW Iceland. Geophysical Journal International. https://doi.org/10.1111/j.1365-246X.2010.04565.x
Dong, D., Herring, T. A., & King, R. W. (1998). Estimating regional deformation from a combination of space and terrestrial geodetic data. Journal of Geodesy, 72(4), 200–214. https://doi.org/10.1007/s001900050161
Feigl, K. L., Agnew, D. C., Bock, Y., Dong, D., Donnellan, A., Hager, B. H., et al. (1993). Space geodetic measurement of crustal deformation in central and southern California, 1984–1992. Journal of Geophysical Research: Solid Earth, 98(B12), 21677–21712. https://doi.org/10.1029/93JB02405
Herring, T. A., Davis, J. L., & Shapiro, I. I. (1990). Geodesy by radio interferometry: The application of Kalman Filtering to the analysis of very long baseline interferometry data. Journal of Geophysical Research: Solid Earth, 95(B8), 12561–12581.
https://doi.org/10.1029/JB095iB08p12561
Hooper, A., Segall, P., & Zebker, H. (2007). Persistent scatterer interferometric synthetic aperture radar for crustal deformation analysis, with application to Volcán Alcedo, Galápagos. Journal of Geophysical Research: Solid Earth, 112(B7). https://doi.org/10.1029/2006JB004763
Hou, C.-S., Hu, J.-C., Shen, L.-C., Wang, J.-S., Chen, C.-L., Lai, T.-C., et al. (2005). Estimation of subsidence using GPS measurements, and related hazard: the Pingtung Plain, southwestern Taiwan. Comptes Rendus Geoscience, 337(13), 1184–1193.
https://doi.org/10.1016/j.crte.2005.05.012
Hsieh, S. H. (1970). Geology and gravity anomalies of the Pingtung Plain, Taiwan. Proc. Geol. Soc. China, 13, 76–89.
Hsu, Y.-J., Yu, S.-B., Simons, M., Kuo, L.-C., & Chen, H.-Y. (2009). Interseismic crustal deformation in the Taiwan plate boundary zone revealed by GPS observations, seismicity, and earthquake focal mechanisms. Tectonophysics, 479(1), 4–18.
https://doi.org/10.1016/j.tecto.2008.11.016
Hsu, Y.-J., Chen, R.-F., Lin, C.-W., Chen, H.-Y., & Yu, S.-B. (2014). Seasonal, long-term, and short-term deformation in the Central Range of Taiwan induced by landslides. Geology, 42(11), 991–994. https://doi.org/10.1130/G35991.1
Hsu, Y.-J., Lai, Y.-R., You, R.-J., Chen, H.-Y., Teng, L. S., Tsai, Y.-C., et al. (2018). Detecting rock uplift across southern Taiwan mountain belt by integrated GPS and leveling data. Tectonophysics, 744, 275–284.
https://doi.org/10.1016/j.tecto.2018.07.012
Hu, C.C., Sheen, H.C. (1989). An evaluation of the hydrocarbon potential of the Niushan and Lungtien structures in the Tainan area Petrol. Geol. Taiwan, 25 (1989), pp. 11-34
Hu, J.-C., Angelier, J., Lee, J.-C., Chu, H.-T., & Byrne, D. (1996). Kinematics of convergence, deformation and stress distribution in the Taiwan collision area: 2-D finite-element numerical modelling. Tectonophysics, 255(3), 243–268.
https://doi.org/10.1016/0040-1951(95)00140-9
Huang, C.-Y., Yuan, P. B., & Tsao, S.-J. (2006). Temporal and spatial records of active arc-continent collision in Taiwan: A synthesis. Geological Society of America Bulletin, 118(3–4), 274–288. https://doi.org/10.1130/B25527.1
Huang, M.-H., Hu, J.-C., Ching, K.-E., Rau, R.-J., Hsieh, C.-S., Pathier, E., et al. (2009). Active deformation of Tainan tableland of southwestern Taiwan based on geodetic measurements and SAR interferometry. Tectonophysics, 466(3), 322–334.
https://doi.org/10.1016/j.tecto.2007.11.020
Liu, C.-H., Pan, Y.-W., Liao, J.-J., Huang, C.-T., & Ouyang, S. (2004). Characterization of land subsidence in the Choshui River alluvial fan, Taiwan. Environmental Geology, 45(8), 1154–1166. https://doi.org/10.1007/s00254-004-0983-6
Lohman, R. B., & Simons, M. (2005). Some thoughts on the use of InSAR data to constrain models of surface deformation: Noise structure and data downsampling: THOUGHTS ON INSAR. Geochemistry, Geophysics, Geosystems, 6(1), n/a-n/a.
https://doi.org/10.1029/2004GC000841
Matsu’ura, M., Jackson, D. D., & Cheng, A. (1986). Dislocation model for aseismic crustal deformation at Hollister, California. Journal of Geophysical Research: Solid Earth, 91(B12), 12661–12674. https://doi.org/10.1029/JB091iB12p12661
McCaffery, R. (2002). Crustal block rotations and plate coupling, in Plate Boundary Zones, in S. Stein and J. Freymueller, eds., Geodynamics Series, Washington: AGU, 101-122. http://web.pdx.edu/~mccaf/pubs/mccaffrey_blocks_agu_2002.pdf
McCaffrey, R. (2005). Block kinematics of the Pacific–North America plate boundary in the southwestern United States from inversion of GPS, seismological, and geologic data. Journal of Geophysical Research, 110(B7), B07401. https://doi.org/10.1029/2004JB003307
Nikolaidis, R. (2002). Observation of Geodetic and Seismic Deformation with the Global Positioning System, Ph.D. dissertation, University of California, San Diego, U. S. A.
Okada, Y. (1985). Surface deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 75(4), 1135–1154.
Okada, Y. (1992). Internal deformation due to shear and tensile faults in a half-space. Bulletin of the Seismological Society of America, 82(2), 1018–1040.
Petersen, M., Zeng, Y., Haller, K., McCaffrey, R., Hammond, W., Bird, P., et al. (2014). Geodesy- and Geology-Based Slip-Rate Models for the Western United States (Excluding California) National Seismic Hazard Maps. Geology Faculty Publications and Presentations. https://doi.org/10.3133/ofr20131293
Rau, R.-J., Ching, K.-E., Hu, J.-C., & Lee, J.-C. (2008). Crustal deformation and block kinematics in transition from collision to subduction: Global positioning system measurements in northern Taiwan, 1995–2005. Journal of Geophysical Research, 113(B9), B09404. https://doi.org/10.1029/2007JB005414
Savage (2001). Strain accumulation and rotation in the Eastern California Shear Zone. Journal of Geophysical Research: Solid Earth - Wiley Online Library. (n.d.). Retrieved June 25, 2020, from
https://agupubs.onlinelibrary.wiley.com/doi/abs/10.1029/2000JB000127
Schwanghart, W. (2020a). Ordinary Kriging. MATLAB Central File Exchange. Retrieved August 15, 2020.
https://www.mathworks.com/matlabcentral/fileexchange/29025-ordinary-kriging
Schwanghart, W. (2020b). Variogramfit. MATLAB Central File Exchange. Retrieved August 15, 2020.
https://www.mathworks.com/matlabcentral/fileexchange/25948-variogramfit),
Schwanghart, W. (2020c). Experimental (Semi-) Variogram. MATLAB Central File Exchange. Retrieved August 15, 2020.
https://www.mathworks.com/matlabcentral/fileexchange/20355-experimental-semi-variogram
Segall, P., & Davis, J. L. (1997). Gps Applications for Geodynamics and Earthquake Studies. Annual Review of Earth and Planetary Sciences, 25(1), 301–336.
https://doi.org/10.1146/annurev.earth.25.1.301
Suppe, J., Imbricated structure of western foothills belt, south central Taiwan, Petroleum Geology of Taiwan, 30, 163-176, 1980.
Teng, L. S. (1990). Geotectonic evolution of late Cenozoic arc-continent collision in Taiwan. Tectonophysics, 183(1), 57–76.
https://doi.org/10.1016/0040-1951(90)90188-E
Teng, L. S. (1996). Extensional collapse of the northern Taiwan mountain belt. Geology, 24(10), 949–952.
https://doi.org/10.1130/0091-7613(1996)024<0949:ECOTNT>2.3.CO;2
Wiltschko, R., Stapput, K., Thalau, P., & Wiltschko, W. (2010). Directional orientation of birds by the magnetic field under different light conditions. Journal of The Royal Society Interface, 7(suppl_2), S163–S177.
https://doi.org/10.1098/rsif.2009.0367.focus
Wolfgang Schwanghart (2020). Ordinary Kriging. MATLAB Central File Exchange. Retrieved August 4, 2020.
https://www.mathworks.com/matlabcentral/fileexchange/29025-ordinary-kriging
Wolfgang Schwanghart (2020). Variogramfit. MATLAB Central File Exchange. Retrieved August 4, 2020.
https://www.mathworks.com/matlabcentral/fileexchange/25948-variogramfit
Wolfgang Schwanghart (2020). Experimental (Semi-) Variogram. MATLAB Central File Exchange. Retrieved August 4, 2020.
https://www.mathworks.com/matlabcentral/fileexchange/20355-experimental-semi-variogram
Wu, F. T., Kuo-Chen, H., & McIntosh, K. D. (2014). Subsurface imaging, TAIGER experiments and tectonic models of Taiwan. Journal of Asian Earth Sciences, 90, 173–208. https://doi.org/10.1016/j.jseaes.2014.03.024
Yu, S., Chen, H., & Kuo, L. (1996). TECTONOPHYSICS Velocity field of GPS stations in the Taiwan area.
中興公司(2012),營運中核能電廠補充地質調查工作地質調查成果總結報告,台灣電力公司報告。
王宏霖(2006),以反射震測法研究木屐寮斷層及其附近構造。國立中央大學地球物理研究所碩士論文,共118 頁。
石瑞銓、王維豪和李元希(2008),地震地質與地變動潛勢分析─斷層帶地下構造調查研究(2/4),經濟部中央地質調查所報告第97-11 號,共127 頁。
李錫堤、鄭錦桐、紀立民、廖啟雯和廖卿妃(2000),槽溝開挖探查結果簡介,第三屆台灣活斷層調查研討會資料。
李珀儂(2008),南台灣恆春區域新期構造活動之研究,國立台灣大學地質科學系碩士論文,共92 頁。
林啟文、盧詩丁、石同生、劉彥求、林偉雄和林燕慧(2007),臺灣西南部的活動斷層─二萬五千分之一活動斷層條帶圖說明書,經濟部中央地質調查所特刊,第17 號,共141 頁。
林啟文、陳文山、劉彥求和陳柏村(2009),台灣東部與南部的活動斷層─二萬五千分之 一活動斷層條帶圖說明書,經濟部中央地質調查所特刊,第23 號,共178 頁。
洪日豪(2006) 台灣西南部前陸地區斷層演化與具油氣潛能之地塊構造。行政院國家科學委員會經濟部能源局九十五年度能源科技學術研討暨成果發表會。
陳文山、黃能偉、游能悌、周飛宏、顏一勤、宋時驊、楊志成和楊小青(2005),地震地質調查及活動斷層資料庫建置計畫─槽溝開挖與古地震研究計畫(4/5)─旗山與龍船斷層條帶地質圖說明書,經濟部中央地質調查所研究報告,第94-08-2 號,共48 頁。
陳柏村(2005),旗山斷層南段變形特性研究,國立成功大學地球科學系碩士論文,共125 頁。
陳延宗(2007),以反射震測法研究左鎮斷層及其附近構造,國立中央大學地球物理研究所論文,共90 頁。
陳文山,游能悌、松多信尚和楊小青 (2010),地震地質與地變動潛勢分析計畫─斷層長期滑移速率與再現週期研究總報告,經濟部中央地質調查所研究報告99-9號,共125 頁。
陳文山、陳高于、楊小青(2011),斷層活動特性分析與評估 (1/4) 經濟部地質調查所研究報告 100-11號,共118頁。
陳文山 (2016) 台灣地質概論,中華民國地質學會,共204頁。
張徽正、林啟文、陳勉銘和盧詩丁(1998),台灣活動斷層概論─五十萬分之一台灣活動斷層分布圖說明書,經濟部中央地質調查所特刊,第十號,共103 頁。
黃旭燦(2003),台灣中南部褶皺逆衝斷層帶地質構造特徵分析,國立中央大學地球物理研究所博士論文,共130 頁。
黃旭燦,台灣中南部褶皺逆衝斷層帶地質構造特徵分析(2003),國立中央大學地球物理研究所博士論文,共130 頁。
黃旭燦、楊耿明、吳榮章、丁信修、李長之、梅文威和徐祥宏(2004),斷層活動性觀測與地震潛勢評估調查研究─台灣陸上斷層帶地質構造與地殼變形調查研究(5/5)─台灣西部麓山帶地區地下構造綜合分析,經濟部中央地質調查所93-13 號,共59 頁。
鄭宏祺,台灣西南部台南至屏東地區地質構造之研究(2000),國立中央大學應用地質研究所碩士論文,共92 頁。
指導教授 張午龍(Wu-Lung Chang) 審核日期 2020-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明