博碩士論文 107329015 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:148 、訪客IP:3.145.47.253
姓名 賴意崴(Yi-Wei Lai)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 質子傳輸型固態氧化物燃料電池之陰極微結構優化與開發
(Development and microstructure optimization for improving performance in proton-conducting solid oxide fuel cells)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 三元素摻雜LLTO混LLZO應用鋰離子電池★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究
★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究
★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響
★ 多孔鎳集電層應用於三維微型固態超級電容器★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器
★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-1以後開放)
摘要(中) 本研究藉由添加直徑500 nm之聚苯乙烯奈米球(PS奈米球)作為陰極材料之造孔劑,開發出用於質子傳輸型固態氧化物燃料電池之孔隙自我梯度排列陰極,並且研究添加PS奈米球之含量對於陰極微觀結構與電池性能之影響。由於PS奈米球與LSCF粉末兩者之密度差異,驅使PS奈米球於陰極重新排列,產生具有梯度之多孔陰極結構。研究結果顯示,15%PS-LSCF於800 ℃之操作溫度下具有146.6 mW/cm2之功率密度,其歐姆阻抗與極化阻抗分別為3.117 Ω‧cm2與0.070 Ω‧cm2;而未添加PS奈米球之LSCF陰極(0%PS-LSCF)僅有49.51 mW/cm2之功率密度,其歐姆阻抗與極化阻抗分別為6.781 Ω‧cm2與0.292 Ω‧cm2。此性能之提升可歸因於具有梯度之多孔陰極結構,使得15%PS-LSCF具有更緻密之陰極-電解質界面,並有效降低電池之歐姆阻抗與極化阻抗。
摘要(英) In this study, 500-nm-diameter polystyrene (PS) nanospheres are used as the pore forming agent in LSCF cathode for proton-conducting solid oxide fuel cells. The effects of PS nanosphere amount on cathode microstructure and cell performance is investigated. A gradient porous cathode is fabricated due to the density difference between the PS nanospheres and LSCF cathode. Results show that, 15%PS-LSCF exhibits highest power density of 146.6 mW/cm2 at 800 ℃ with an ohmic and polarization resistance of 3.117 Ω‧cm2 and 0.070 Ω‧cm2 respectively. Whereas, the 0%PS-LSCF exhibits a power density of 9.51 mW/cm2 with an ohmic and polarization resistances of 6.781 Ω‧cm2 and 0.292 Ω‧cm2 respectively. The 15% PS-LSCF cell exhibits lower cell resistance and enhanced cell performance of three times compared to 0% PS-LSCF cell. The higher cell performance of 15% PS-LSCF cell is attributed to the gradient porous cathode with higher cathode-electrolyte interface favoring an efficient protonic transfer in cell performance.
關鍵字(中) ★ 聚苯乙烯奈米球
★ 造孔劑
★ 孔隙率
★ 陰極
★ 鑭鍶鈷鐵
★ 質子傳輸型固態氧化物燃料電池
關鍵字(英) ★ polystyrene nanosphere
★ pore former
★ porosity
★ cathode
★ LSCF
★ proton-conducting solid oxide fuel cell
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 viii
前言 1
第1章 實驗原理與文獻回顧 3
1.1. 固態氧化物燃料電池(SOFC) 3
1.1.1. SOFC之原理 3
1.1.2. SOFC之優點 5
1.1.3. SOFC之結構 6
1.2. SOFC之電解質材料 8
1.2.1. 螢石(Fluorite)結構 8
1.2.2. 鈣鈦礦(Perovskite)結構 10
1.2.3. 質子傳輸電解質 11
1.2.4. 質子傳輸機制 11
1.3. SOFC之粉末製備 13
1.3.1. 固態反應法(Solid-state reaction) 13
1.3.2. 溶膠-凝膠法(Sol-gel method) 13
1.3.3. 燃燒法(Combustion) 13
1.3.4. 靜電紡絲法(Electrospinning method) 13
1.4. SOFC之電池製程 15
1.4.1. 刮刀成型技術(Tape casting) 15
1.4.2. 乾壓成型技術(Dry pressing) 15
1.4.3. 旋轉塗佈技術(Spin coating) 16
1.5. 電化學分析原理 17
1.5.1. 極化曲線(I-V curve) 17
1.5.2. 電化學交流阻抗圖譜 18
第2章 實驗方法 20
2.1. 實驗藥品 20
2.2. 實驗方法與流程 21
2.2.1. BaCe0.6Zr0.2Y0.2O3-δ前驅粉末製備 21
2.2.2. 陽極支撐之半電池製備 22
2.2.3. 陰極孔隙自我梯度排列之單電池製備 23
2.2.4. LSCF-Ag奈米纖維複合陰極之單電池製備 24
2.3. 材料性質分析 25
2.3.1. X-ray粉末繞射分析 25
2.3.2. 掃描式電子顯微鏡 26
2.4. 電池I-V性能量測 26
2.5. 電化學交流阻抗分析 26
第3章 結果與討論 27
3.1. 材料性質分析 27
3.1.1. 煆燒粉末與奈米纖維之XRD與微結構分析 27
3.1.2. 單電池之XRD與微結構分析 29
3.2. 電池之電化學性能測量與分析 32
3.2.1. 陰極孔隙自我梯度排列 32
第4章 結論 38
參考文獻 39
參考文獻 [1] Daisy Chuang:日本朝氫能社會目標邁進,10 MW 世界最大再生能源製氫廠完工。2020年03月11日,取自https://technews.tw/2020/03/11/jp-solar-powered-hydrogen-10mw/。
[2] I.R.D. Larramendi, N. Ortiz-Vitoriano, I. B. Dzul-Bautista, T. Rojo, “Designing Perovskite Oxides for Solid Oxide Fuel Cells”, IntechOpen, Rijeka, 2016.
[3] Q.Y. Lin, J. Lin, T. Liu, C.R. Xia, C.S. Chen, “Solid oxide fuel cells supported on cathodes with large straight open pores and catalyst-decorated surfaces”,Solid State Ionics, Vol. 323, pp. 130-135, 2018.
[4] L. dos Santos-Gómez, E.R. Losilla, F. Martín, J.R. Ramos-Barrado, D. Marrero-López, “Novel Microstructural Strategies To Enhance the Electrochemical Performance of La0.8Sr0.2MnO3−δ Cathodes”, ACS Applied Materials & Interfaces, Vol. 7, pp. 7197-7205, 2015.
[5] L.F. Nie, J.C. Liu, Y.J. Zhang, M.L. Liu, “Effects of pore formers on microstructure and performance of cathode membranes for solid oxide fuel cells”, Journal of Power Sources, Vol. 196, pp. 9975-9979, 2011.
[6] H.D. Tang, Z.Z. Jin, Y.S. Wu, W. Liu, L. Bi, “Cobalt-free nanofiber cathodes for proton conducting solid oxide fuel cells”, Electrochemistry Communications, Vol. 100, pp. 108-112, 2019.
[7] Y. Chen, Y.F. Bu, B.T. Zhao, Y.X. Zhang, D. Ding, R.Z. Hu, T. Wei, B. Rainwater, Y. Ding, F.L. Chen, C.H. Yang, J. Liu, M.L. Liu, “A durable, high-performance hollow-nanofiber cathode for intermediate-temperature fuel cells”, Nano Energy, Volume 26, pp. 90-99, 2016.
[8] S. Shahgaldi, Z. Yaakob, D.J. Khadem, M. Ahmadrezaei, W.R.W. Daud, “Synthesis and characterization of cobalt-free Ba0.5Sr0.5Fe0.8Cu0.2O3−δ perovskite oxide cathode nanofibers”, Journal of Alloys and Compounds, Vol. 509, pp. 9005-9009, 2011.
[9] Q. Li, L.P. Sun, H. Zhao, H.L. Wang, L.H. Huo, A. Rougier, S. Fourcade, J.C. Grenier, “La1.6Sr0.4NiO4 one-dimensional nanofibers as cathode for solid oxide fuel cells”, Journal of Power Sources, Vol. 263, pp. 125-129, 2014.
[10] M.Y. Liu, B. Yu, J.M. Xu, J. Chen, “Influence of pore formers on physical properties and microstructures of supporting cathodes of solid oxide electrolysis cells”, International Journal of Hydrogen Energy, Vol. 35, pp. 2670-2674, 2010.
[11] Y.Y. Huang, J.M. Vohs, R.J. Gorte, “Fabrication of Sr-Doped LaFeO3 YSZ Composite Cathodes”, Journal of The Electrochemical Society, Vol. 151, pp. A646-A651, 2004.
[12] 黃鎮江,“燃料電池”,二版,全華圖書股份有限公司,新北市,民國九十四年。
[13] R. Lan, S.W. Tao, “Proton‐Conducting Materials as Electrolytes for Solid Oxide Fuel Cells”, Wiley Online Books, 2013.
[14] E. Fabbri, D. Pergolesi, E. Traversa, “Electrode materials: a challenge for the exploitation of protonic solid oxide fuel cells”, Science and Technology of Advanced Materials, Vol. 11, pp. 044301, 2010.
[15] A.L. Lee, R. F. Zabransky, and W. J. Huber, “Internal Reforming Development for Solid Oxide Fuel Cells”, Industrial & Engineering Chemistry Research, Vol. 29, pp. 766-773, 1990.
[16] L.M. Zhang and W.S. Yang, “Direct Ammonia Solid Oxide Fuel Cell Based on Thin Proton-conducting Electrolyte”, Journal of Power Sources, Vol. 179, pp. 92-95, 2008.
[17] F. Ramadhani, M.A. Hussain, H. Mokhlis, S. Hajimolana, “Optimization strategies for Solid Oxide Fuel Cell (SOFC) application: A literature survey”, Renewable and Sustainable Energy Reviews, Vol. 76, 460-484, 2017.
[18] M. Zunic, L. Chevallier, A. Radojkovic, G. Brankovic, Z. Brankovic, and E. D. Bartolomeo, “Influence of the ratio between Ni and BaCe0.9Y0.1O3-δ on microstructural and electrical properties of proton conducting Ni- BaCe0.9Y0.1O3-δ anodes”, Journal of Alloys and Compounds, Vol. 509, pp. 1157-1162, 2011.
[19] B. H. Rainwater, M. F. Liu, and M. L. Liu, “A more efficient anode microstructure for SOFCs based on proton conductors”, International Journal of Hydrogen Energy, Vol. 37, pp. 18342-18348, 2012.
[20] L. Bi, E. Fabbri, and E. Traversa, “Effect of anode functional layer on the performance of proton-conducting solid oxide fuel cells (SOFCs)”, Electrochemistry Communications, Vol. 16, pp. 37-40, 2012.
[21] K. Xie, R. Q. Yan, and X. Q. Liu, “A novel anode supported BaCe0.4Zr0.3Sn0.1Y0.2O3-δ electrolyte membrane for proton conducting solid oxide fuel cells”, Electrochemistry Communications, Vol. 11, pp. 1618-1622, 2009.
[22] H. Moon, S. D. Kim, E. W. Park, S. H. Hyun, and H. S. Kim, “Characteristics of SOFC single cells with anode active layer via tape casting and co-firing”, International Journal of Hydrogen Energy, Vol. 33, pp. 2826-2833, 2008.
[23] P. Sawant, S. Varma, M.R. Gonal, B.N. Wani, D. Prakash, S.R. Bharadwaj, “Effect of Ni Concentration on Phase Stability, Microstructure and Electrical Properties of BaCe0.8Y0.2O3-δ - Ni Cermet SOFC Anode and its application in proton conducting ITSOFC”, Electrochimica Acta, Vol. 120, pp. 80-85, 2014.
[24] Yeong Yoo, Nguon Lim, “Performance and stability of proton conducting solid oxide fuel cells based on yttrium-doped barium cerate-zirconate thin-film electrolyte”, Journal of Power Sources, Vol. 229, pp. 48-57, 2013.
[25] M. Hakim, J.H. Joo, C.Y. Yoo, B.K. Kim, J.H. Yu, “Enhanced chemical stability and sinterability of refined proton-conducting perovskite: Case study of BaCe0.5Zr0.3Y0.2O3−δ”, Journal of the European Ceramic Society, Vol. 35, pp. 1855-1863, 2015.
[26] Z. H. Chen, R. Ran, W. Zhou, Z. P. Shao, and S. M. Liu, “Assessment of Ba0.5Sr0.5Co1-yFeyO3-δ (y = 0.0-1.0) for prospective application as cathode for IT-SOFCs or oxygen permeating membrane”, Electrochimica Acta, Vol. 52, pp. 7343-7351, 2007.
[27] C. A. J. Fisher, M. Yoshiya, Y. Iwamoto, J. Ishii, M. Asanuma, and K. Yabuta, “Oxide ion diffusion in perovskite-structured Ba1-xSrxCo1-yFeyO2.5: A molecular dynamics study”, Solid State Ionics, Vol. 177, pp. 3425-3431, 2007.
[28] W. Zhou, R. Ran, Z. P. Shao, R. Cai, W. Q. Jin, N. P. Xu, and J. M. Ahn, “Electrochemical performance of silver-modified Ba0.5Sr0.5Co0.8Fe0.2O3-δ cathodes prepared via electroless deposition”, Electrochimica Acta, Vol. 53, pp. 4370-4380, 2008.
[29] B. Wei, Z. Lü, X.Q. Huang, J. P. Miao, X. Q. Sha, X. S. Xin, and W. H. Su, “Crystal Structure, Thermal Expansion and Electrical Conductivity of Perovskite Oxides BaxSr1-xCo0.8Fe0.2O3-δ (0.3 ≤ x ≤ 0.7)”, Journal of the European Ceramic Society, Vol. 26, pp. 2827-2832, 2006.
[30] A. Navrotsky, “Thermochemical insights into refractory ceramic materials based on oxides with large tetravalent cations”, Journal of Materials Chemistry, Vol 15, pp. 1883-1890, March 2005.
[31] A. Akbari-Fakhrabadi, R.V. Mangalaraja, Felipe A. Sanhueza, Ricardo E. Avila, S. Ananthakumar, S.H. Chan, “Nanostructured Gd–CeO2 electrolyte for solid oxide fuel cell by aqueous tape casting”, Journal of Power Sources, Vol. 218, pp. 307-312, 2012.
[32] S.M. Haile, “Fuel cell materials and components”, Acta Materialia, Vol. 51, pp. 5981-6000, 2003.
[33] E. Fabbri, D. Pergolesi, E. Traversa, “Materials challenges toward proton-conducting oxide fuel cells: a critical review”, Chemical Society Reviews, Vol. 39, pp. 4355-4369, 2010.
[34] K. Katahira, Y. Kohchi, T. Shimura, and H. Iwahara, “Protonic conduction in Zr-substituted BaCeO3”, Solid State Ionics, Vol. 138, pp. 91-98, 2000.
[35] K. H. Ryu and S. M. Haile, “Chemical stability and proton conductivity of doped BaCeO3-BaZrO3 solid solutions”, Solid State Ionics, Vol. 125, pp. 355-367, 1999.
[36] R. B. Cervera, Y. Oyama, and S. Yamaguchi, “Low temperature synthesis of nanocrystalline proton conducting BaZr0.8Y0.2O3-δ by sol-gel method”, Solid State Ionics, Vol. 178, pp. 569-574, 2007.
[37] W. Zhou, Z.P. Shao, R. Ran, H.X. Gu, W.Q. Jin, N.P. Xu, “LSCF Nanopowder from Cellulose–Glycine-Nitrate Process and its Application in Intermediate-Temperature Solid-Oxide Fuel Cells”, The American Ceramic Society, Vol. 91, pp.1155-1162, 2008.
[38] D. Li and Y. Xia, “Electrospinning of nanofibers: reinventing the wheel?”, Advanced Materials, Vol. 16, pp. 1151-1170, 2004.
[39] Z. Wang, J. Qian, J. Cao, S. Wang, T. Wen, “A study of multilayer tape casting method for anode-supported planar type solid oxide fuel cells (SOFCs)”, Journal of Alloys and Compounds, Vol. 437 (1-2), pp.264-268, 2007.
[40] T. O. Mason, “Advanced ceramics”, Encyclopædia Britannica, USA, 2016.
[41] X. B. Zhu, Z. Lü, B. Wei, X. Q. Huang, Y. H. Zhang, and W. H. Su, “A symmetrical solid oxide fuel cell prepared by dry-pressing and impregnating methods”, Journal of Power Sources, Vol. 196, pp. 729-733, 2011.
[42] J. M. Serra and W. A. Meulenberg, “Thin‐Film Proton BaZr0.85Y0.15O3 Conducting Electrolytes: Toward an Intermediate‐Temperature Solid Oxide Fuel Cell Alternative”, Journal of the American Ceramic Society, Vol. 90, pp. 2082-2089, 2007.
[43] S. Ahmadi-Kandjani, S. Mirershadi, A. Nikniazi, "Inorganic–Organic Perovskite Solar Cells.", pp. 223-246, INTECH Publication ,2015.
[44] EG & G Technical Services Inc., Fuel Cell Handbook 7th Eds, U.S. , Department of Energy, 2004.
[45] E. Povoden-Karadeniz, “Thermodynamic database of the La-Sr-Mn-Cr-O oxide system and applications to solid oxide fuel cells”, Swiss Federal Institute of Technology Zurich, degree of doctor, 2008.
[46] S. Murakami, K. Ri, T. Itoh, N. Izu, W.S. Shin, K. Inukai, Y. Takahashi, Y. Ando, “Effects of ethyl cellulose polymers on rheological properties of (La,Sr)(Ti,Fe)O3-terpineol pastes for screen printing”, Ceramics International, Vol. 40, pp. 1661-1666, 2014.
[47] J.W. Phair, “Rheological Analysis of Concentrated Zirconia Pastes with Ethyl Cellulose for Screen Printing SOFC Electrolyte Films”, Journal of the American Ceramic Society, Vol. 91, pp. 2130-2137, 2008.
[48] N. Hildenbrand, B.A. Boukamp, P. Nammensma, D.H.A. Blank, “Improved cathode/electrolyte interface of SOFC”, Solid State Ionics, Vol. 192, pp. 12-15, 2011.
[49] J.I. Gazzarri, O. Kesler, Non-destructive delamination detection in solid oxide fuel cells, Journal of Power Sources, Vol. 167, pp. 430-441, 2007.
指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2020-7-2
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明