博碩士論文 108226054 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:84 、訪客IP:3.145.202.60
姓名 薛志瑋(Chih-Wei Xue)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 井狀結構全像碟片應用於角度多工全像儲存系統之研究
(Study of Well-Structured Holographic Disk for Angular Multiplexing Holographic Data Storage System)
相關論文
★ 奈米電漿子感測技術於生物分子之功能分析★ 表面結構擴散片之設計、製作與應用
★ 結合柱狀透鏡陣列之非成像車頭燈光型設計★ CCD 量測儀器之研究與探討
★ 鈦酸鋇晶體非均向性自繞射之研究及其在光資訊處理之應用★ 多光束繞射光學元件應用在DVD光學讀取頭之設計
★ 高位移敏感度之全像多工光學儲存之研究★ 利用亂相編碼與體積全像之全光學式光纖感測系統
★ 體積光柵應用於微物3D掃描之研究★ 具有偏極及光強分佈之孔徑的繞射極限的研究
★ 三維亂相編碼之體積全像及其應用★ 透鏡像差的量測與MTF的驗證
★ 二位元隨機編碼之全像光學鎖之研究★ 亂相編碼於體積全像之全光學分佈式光纖感測系統之研究
★ 自發式相位共軛鏡之相位穩定與應用於自由空間光通訊之研究★ 體積全像空間濾波器應用於物體 三度空間微米級位移之量測
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-1以後開放)
摘要(中) 本論文建立一套井狀結構全像碟片內之等效光場傳遞模型,並基於此模型模擬全像儲存系統使用井狀結構全像碟片時,訊號紀錄與讀取的狀況,並且將由於井狀結構鏡射而錯位的訊號,解回原本的位置後,進行誤碼比對與分析。最後建立一套全像儲存系統中M#消耗的評估方法,比較井狀結構全像碟片與傳統全像碟片間的優劣。
摘要(英) In this thesis, a 4-side reflected well-like holographic disk is proposed to improve the performance of a holographic data storage system. An equivalent light propagation model is built to simulate the writing process and the reading result of a holographic disk of this type. A recovery method is established to recover the reflected signal proceeding the bit error comparison process. An approach to calculate effective consumption ratio of M# is suggested to evaluate the performance of a holographic data storage system, comparing with the traditional holographic disk.
關鍵字(中) ★ 全像術
★ 全像儲存
關鍵字(英) ★ Holography
★ Holographic data storage
論文目次 摘要 I
致謝 III
目錄 IV
圖目錄 VII
表目錄 XIV
第一章 緒論 1
1-1 研究動機 1
1-2 全像儲存技術之歷史與發展 2
1-3 論文大綱 5
第二章 原理介紹 7
2-1 全像術 7
2-2 布拉格條件 10
2-3 耦合波理論 14
2-3-1 布拉格匹配 19
2-3-2 布拉格不匹配 21
2-4 相位疊加法 24
第三章 加入井狀結構碟片之全像儲存系統之建立 28
3-1 同軸式全像儲存系統 28
3-2 離軸式全像儲存系統 29
3-3 目前全像碟片厚度之限制 30
3-4 加入井狀結構全像碟片之全像儲存系統 32
3-5 井狀結構全像碟片內光場傳遞模型之建立 35
第四章 井狀結構全像碟片之紀錄讀取與誤碼分析 42
4-1 系統理論模型推導 42
4-2 井狀結構所導致訊號鏡射之還原方法 50
4-3 經過還原之訊號之誤碼分析 56
4-3-1 不同井狀結構全像碟片厚度下之誤碼比對 57
4-3-2 井狀結構全像碟片於x方向上位移所造成之影響 61
4-3-3 井狀結構全像碟片於x方向上微小變動之誤碼率靈敏度分析 65
4-4 繞射訊號局域不均之成因分析 69
第五章 全像儲存系統之M#消耗分析 72
5-1 全像碟片中之有效M#消耗 72
5-2 紀錄區域大小對繞射效率之影響 74
5-3 離軸式全像儲存系統有無使用井狀結構全像碟片之比較 76
5-4 改進係數(improvement factor)之定義 81
5-5 選用高NA物鏡之全像儲存系統 87
5-5-1 選用NA值為0.9之物鏡 91
5-5-2 選用NA值為1.1之物鏡 95
第六章 結論 101
參考文獻 104
附錄A 107
中英文名詞對照表 108
參考文獻 1. D. Reinsel, J. Gantz, J, Rydning, “The Digitization of the World - From Edge to Core,” https://www.seagate.com/files/www-content/our-story/trends/files/idc-seagate-dataage-whitepaper.pdf.
2. S. Kostyshen, “The bridge to big data – nice work if you can get it,” http://www.k2view.com/blog_post/the-bridge-to-big-data-nice-work-if-you-can-get-it/.
3. T. Hoshizawa, K. Shimada, K. Fujita, and Y. Tada, “Practical angular-multiplexing holographic data storage system with 2 terabyte capacity and 1 gigabit transfer rate,” Jpn. J. Appl. Phys. 55, 09SA06 (2016).
4. M. Gu, X. Li, and Y. Cao, “Optical storage arrays: a perspective for future big data storage,” Light: Sci. Appl. 3, e177 (2014).
5. L. Hesselink, S. S. Orlov, and M. C. Bashaw, “Holographic data storage systems,” in Proceedings of IEEE 92, 1231–1280 (2004).
6. L. Dhar, K. Curtis, and T. Fäche, “Holographic data storage: Coming of age,” Nat. Photonics 2, 403–405 (2008).
7. H. Horimai, X. Tan, and J. Li, “Collinear holography,” Appl. Opt. 44, 2575–2579 (2005).
8. E. N. Leith, A. Kozma, J. Marks, and N. Massey, “Holographic data storage in three-dimensional media,” Appl. Opt. 5, 1303–1311 (1966).
9. G. A. Rakuljic, V. Leyva, and A. Yariv, “Optical data storage by using orthogonal wavelength-multiplexed volume holograms,” Opt. Lett. 17, 1471 (1992).
10. K. Curtis, L. Dhar, A. Hill, W. Wilson, and M. Ayres, Holographic Data Storage: From Theory to Practical Systems (Wiley, 2010).
11. J. W. Goodman, Introduction to Fourier Optics, 3rd eds. (McGraw-Hill, New York, 2002).
12. H. Coufal, and G. W. Burr, “Optical data storage,” Chapter 26, International Trends in Applied Optics, ed., A. Guenther, SPIE, (2002).
13. K. Anderson and K. Curtis, “Polytopic multiplexing,” Opt. Lett. 29, 1402-1404 (2004).
14. J. Zang, G. Kang, P. Li, Y. Liu, F. Fan, Y. Hong, Y. Huang, X. Tan, A. Wu, T. Shimura, and K. Kuroda, “Dual-channel recording based on the null reconstruction effect of orthogonal linear polarization holography,” Opt. Lett. 42, 1377-1380 (2017).
15. R. Fujimura, T. Shimura, and K. Kuroda, “Multiplexing capability in polychromatic reconstruction with selective detection method,” Opt. Express 18, 1091-1098 (2010).
16. T. Ochiai, D. Barada, T. Fukuda, Y. Hayasaki, K. Kuroda, and T. Yatagai, “Angular multiplex recording of data pages by dual-channel polarization holography,” Opt. Lett. 38, 748-750 (2013).
17. G. Barbastathis, M. Levene, and D. Psaltis, “Shift multiplexing with spherical reference waves,” Appl. Opt. 35, 2403–2417 (1996).
18. H. Y. S. Li and D. Psaltis, “Three-dimensional holographic disks,” Appl. Opt. 33, 3764–3774 (1994).
19. T. C. Teng, Y. W. Yu, and C. C. Sun, “Enlarging multiplexing capacity with reduced radial cross talk in volume holographic discs,” Opt. Express 14, 3187–3192 (2006).
20. T. Nobukawa, Y. Wani, and T. Nomura, “Multiplexed recording with uncorrelated computer-generated reference patterns in coaxial holographic data storage,” Opt. Lett. 40, 2161–2164 (2015).
21. C. Li, L. Cao, Z. Wang, and G. Jin, “Hybrid polarization-angle multiplexing for volume holography in gold nanoparticle-doped photopolymer,” Opt. Lett. 39, 6891-6894 (2014).
22. C. C. Sun and W. C. Su, “Three-dimensional shifting selectivity of random phase encoding in volume holograms,” Appl. Opt. 40, 1253-1260 (2001).
23. D. Gabor, “A new Microscopic principle,” Nature 161, 777 (1948).
24. E. N. Leith and J. Upatnieks, “Reconstructed Wavefronts and Communication Theory,” Opt. Soc. Am. 52, 1123 (1962).
25. P. J. van Heerden, “Theory of optical information storage in solids,” Appl. Opt. 2, 393 (1963).
26. A. Pu and D. Psaltis, “Holographic data storage with 100 bits/μm2 density,” presented at Optical Data Storage Topical Meeting ODS Conference Digest, Arizona-Tucson, USA, 1997.
27. G. W. Burr, C. M. Jefferson, H. Coufal, M. Jurich, J. A.Hoffnagle, R. M. Macfarlane, and R. M. Shelby, “Volume holographic data storage at an areal density of 250 Gigapixels/in2,” Opt. Lett. 26, 444–446 (2001).
28. K. Curtis, “Holographic Data Storage,” presented at 2005 Fall Research Review, Center for Magnetic Recording Research, University of California, San Diego, 26 October 2005.
29. T. Sandhu, “Holographic storage promises 1.6TB per disc by 2011. 300GB on show today,” http://hexus.net/tech/news/storage/8150-holographic-storage-promises-16tb-per-disc-2011-300gb-show-today/.
30. W. R. Klein, “Theoretical Efficiency of Bragg Devices,” Proc. IEEE 54, 803-804 (1966).
31. H. Kogelnik, “Coupled wave theory for thick hologram gratings,” Bell Syst. Tech. J. 48, 2909-2947 (1969).
32. A. Yariv, and P. Yeh, Optical Waves in Crystals (John Wiley & Sons, New York, 1984).
33. 楊繼賢,使用微透鏡陣列之同軸全像儲存系統與其考慮材料紀錄動態範圍之模型建立,中華民國一百零六年。
34. 鄧敦建,體積全像於光學元件及光儲存之研究,國立中央大學光電科學研究所博士論文,中華民國九十五年。
35. C. C. Sun, “Simplified model for diffraction analysis of volume holograms,” Opt. Eng. 42, 1184-1185 (2003).
36. 鄭智元,同軸式全像儲存系統記錄介質具有離焦及傾斜之研究,國立中央大學光電科學研究所博士論文,中華民國一百零四年。
37. 鄭智元、余業緯、孫慶成 (2014, 03)。〈同軸式全像資訊儲存系統之理論模型〉。科儀新知,198,頁73-84。
38. B. E. Miller and Y. Takashima, "Cavity techniques for holographic data storage recording," Opt. Express 24, 6300-6317 (2016).
39. T. Nobukawa and T. Nomura, “Digital super-resolution holographic data storage based on Hermitian symmetry for achieving high areal density,” Opt. Express 25, 1326-1338 (2017).
40. F. H. Mok, G. W. Burr, and D. Psaltis, “System metric for holographic memory systems,” Optics Lett. 21, 896-898 (1996).
41. D. G. Voelz, Computational Fourier Optics: A MATLAB Tutorial (SPIE Press, 2011).
42. S. Bhattacharya and V. Anand, Design and Fabrication of Diffractive Optical Elements with MATLAB (SPIE Press, 2017).
43. K. Matsushima, H. Schimmel, and F. Wyrowski, “Fast calculation method for optical diffraction on tilted planes by use of the angular spectrum of plane waves,” J. Opt. Soc. Am. A 20, 1755–1762 (2003).
44. K. Matsushima, “Shifted angular spectrum method for off-axis numerical propagation,” Opt. Express 18, 18453-18463 (2010).
45. T. Shimobaba, K. Matsushima, T. Kakue, N. Masuda, and T. Ito, “Scaled angular spectrum method,” Opt. Lett. 37, 4128-4130 (2012).
46. A. Ritter, “Modified shifted angular spectrum method for numerical propagation at reduced spatial sampling rates,” Opt. Express 22, 26265-76 (2014).
47. C. Chang, J. Xia, J. Wu, W. Wei, Y. Xie, M. Kang, and Q. Zhang, “Scaled diffraction calculation between tilted planes using nonuniform fast Fourier transform,” Opt. Express 22, 17331-40 (2014).
48. T. Kozacki and K. Falaggis, “Angular spectrum method with compact space-bandwidth: generalization and full-field accuracy,” Appl. Opt. 55, 5014-24 (2016).
49. K. Curtis, K. Anderson, and M.R. Ayres. “M/# Requirements for Holographic Data Storage,” in Optical Data Storage Topical Meeting (2006).
50. M. R. Ayres and R. R. McLeod, “Medium consumption in holographic memories,” Appl. Opt. 48, 3626-3637 (2009).
指導教授 孫慶成(Ching-Cherng Sun) 審核日期 2020-8-11
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明