博碩士論文 107329006 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:37 、訪客IP:18.226.133.0
姓名 粘益原(Yi-Yuan Nian)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 添加多孔鉬與Ti-6Al-4V顆粒對鎂鋅鈣塊狀金屬玻璃複材熱性質及機械性質之研究
(Study of Thermal and Mechanical Properties of Mg-based Bulk Metallic Glass Composite with Ex-situ Adding Porous Mo and Spherical Ti-6Al-4V Particles)
相關論文
★ (Zr48Cu36Al8Ag8)99.25Si0.75複材高溫塑性行為之研究★ 具鉭顆粒散布強化之鐵基金屬玻璃複材的合成及其性質之研究
★ 鋯摻雜對SrCe1-xZrxO3-δ (0.0≦x≦0.5) 氫傳輸透膜微結構與性質影響之研究★ 適用於生物駐植物之無毒鈦基金屬玻璃之合金設計
★ 利用急冷旋鑄及真空熱壓製備Zn4Sb3奈米/微米晶塊材之熱電性質與機械性質研究★ 鐵顆粒添加對鎂鋅鈣非晶質合金熱性質及機械性質影響之研究
★ Ba0.8Sr0.2Ce0.8-x-yZryInxY0.2O3-δ(x=0.05,0.1 y=0,0.1)固態氧化物燃料電池電解質材料燒 結能力、微結構與其導電性質之研究★ 鋯基與鈦基金屬玻璃薄膜應用於7075-T6航空用鋁合金疲勞性質改善之研究
★ 添加鉭對鋯鋁鈷塊狀非晶質合金機械性質影響之研究★ 鐵基塊狀金屬玻璃熱塑成形性之研究
★ 鋯基金屬玻璃薄膜對鎂基塊狀金屬玻璃複材之機械性質與抗腐蝕性提升之研究★ 微量鉭顆粒添加對鋯-銅-鋁-鈷塊狀非晶質合金鋯銅析出相的演變及機械性質之影響
★ 雷射積層製造用鐵基金屬玻璃粉末與其工件性質之研究★ 鐵基金屬玻璃破裂韌性提升 及其積層製造用粉體製作之研究
★ 質子傳輸型固態氧化物燃料電池之陽極支撐電解質材料製作及其性能之研究★ 生物相容性鈦基金屬玻璃合金粉末用於積層製造之研製
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-8-31以後開放)
摘要(中) 近年來,在生醫用骨釘及縫合鉚釘等骨科植入物中,可降解材料發展尤為重要,鎂基金屬玻璃合金相當受矚目,因為相比傳統生醫材料或是鎂合金,其具有更良好的機械性能、與人體骨骼相似的楊氏係數、良好生物相容性。金屬玻璃是非結晶結構沒有晶界,可以降低材料的分解速率,因此適合骨科植入物。
但是金屬玻璃在常溫下壓縮材料缺乏韌性,影響了後續加工與應用。本實驗選擇具有較佳玻璃形成能力的Mg66Zn29Ca5為基材,分別添加不同體積分率(5~30 vol.%)多孔鉬顆粒與Ti-6Al-4V顆粒製成鎂基非晶質複材,利用外添加顆粒方式達到散佈強化的效果,藉此提升塊狀金屬玻璃之韌性;同時也設計並製成核殼結構(Core-Shell Structure)之棒材,以提高鎂基金屬玻璃棒材之尺寸。
結果顯示經過外添加之複材,均為部分非晶態,但其抗壓強度仍遠高於一般鎂合金,添加Ti-6Al-4V顆粒之非晶複材的破裂韌性並無明顯的改善; 添加多孔鉬顆粒之非晶複材,隨著添加量增加至20 vol.%,最大破裂韌性從1.10提升至6.1 MPa‧m1/2,且最大抗壓強度亦能保持613 MPa,並隨著顆粒添加量增加上升 進一步提升壓縮應變量 ,塑性變形量約 10%。而添加多孔鉬顆粒之core-shell複材,保持良好非晶質結構及玻璃形成能力,其破裂韌性為5.66 MPa‧m1/2,最大抗壓強度亦能保持609 MPa,Coreshell結構棒材熱性質與直徑3 mm棒材表現相仿,確實能提升其非晶性及熱性質。
摘要(英) Mg-based alloys attract lots of attention as biodegradable materials. Mg-based alloys have good mechanical properties, similar Young′s modulus to human bones as well as the good biocompatibility. Mg-Zn-Ca bulk metallic glass material has no grain boundaries which can decrease the degradation rate of the implant material in comparison with Mg alloys and suitable for orthopedic implants.
However, the weakness of metallic glass is brittle which limited the workability via machining. In this study, Mg66Zn29Ca5 with better glass forming ability was selected as the substrate, porous Mo particles and Ti-6Al-4V particles with different volume fractions were added to fabricate Mg-based bulk metallic composites (BMGC). The particles are added to achieve dispersion strengthening and enhance the toughness of the bulk metal glass. At the same time, a core-shell structure rod was designed and fabricated to improve the dimension of BMGC rod.
The optima results occur at 3 mm Mg-Zn-Ca BMGC rods with 20 vol.% porous Mo particles, the fracture toughness increased from 1.10 to 6.1 MPa‧m1/2 and remained the maximum compressive strength of 613 MPa. Meanwhile, the ductility also increased to about 10%.
Due to the limitation of cooling rate, both Mg66Zn29Ca5 BMG and BMGC rods with 4 mm in diameter present only partial amorphous status. Therefore, a novel core-shell structure rod was developed, with pure Mg rod as core and Mg66Zn29Ca5 BMG and BMGC as shell to increase the cooling rate. As a result, 4 mm core-shell BMGCs rods (added with porous Mo particles) maintains a good amorphous structure and glass forming ability. The optimum performance occurs at the 4 mm core-shell rods with 25 vol.% porous Mo particle additions, the fracture toughness increased from 1.5 to 5.66 MPa∙m1/2 and remained the maximum compressive strength of 609 MPa.
關鍵字(中) ★ 生物相容性
★ 生物降解
★ 核殼結構
★ 散佈強化
★ 破裂韌性
關鍵字(英) ★ biocompatibility
★ biodegradation
★ amorphous alloy
★ core-shell structure
★ dispersion strengthening
★ fracture toughness
論文目次 摘要 I
Abstract II
致謝 III
表目錄 VII
圖目錄 VIII
第一章 前言 1
1-1 緒論 1
1-2 研究動機 2
1-3 研究目的 2
第二章 理論基礎 4
2-1 金屬玻璃合金之概述 4
2-2 金屬玻璃合金之發展歷程 5
2-3 金屬玻璃實驗歸納法則 7
2-4 金屬玻璃之製程 8
2-5 金屬玻璃之熱力學 10
2-5-1 非晶質之介穩態平衡 10
2-5-2 玻璃轉換溫度(Tg) 11
2-5-3 簡化玻璃轉化溫度(Trg) 11
2-5-4 過冷液相區(ΔTx) 12
2-5-5 γ值與γm值 12
2-6 金屬玻璃合金之特性……...……………………………………….…………….13
2-6-1 機械性質 14
2-6-2 抗菌性與耐腐蝕 15
2-6-3 其他性質 15
2-7 鎂基金屬玻璃及其複材之沿革……………….…………………………………15
2-8 塊狀金屬玻璃複合材料的強化機制 16
2-8-1 外添加法 16
2-8-2 內析出法 17
第三章 實驗步驟 25
3-1 試片製作 25
3-1-1 鎂基金屬玻璃預熔塊材原料配製 25
3-1-2 鎂合金基材及其複材預熔 26
3-1-3 鎂基金屬玻璃其複材棒材製作 26
3-2 微結構分析 28
3-2-1 光學顯微鏡 28
3-2-2 X光繞射分析 28
3-2-3 掃描式電子顯微鏡與能量分散光譜儀的分析 28
3-3 熱性質分析 29
3-4 機械性質測試 29
3-4-1 硬度測試 29
3-4-2 破壞韌性分析 30
3-4-3 壓縮測試 30
第四章 結果與討論 40
4-1 鎂鋅鈣金屬玻璃基材及其複材之3 mm及 4 mm棒材 40
4-1-1 外添加顆粒的實際含量及顆粒之間距離 40
4-1-2 X光繞射分析 41
4-1-3 壓縮前試片SEM表面觀察與EDS成分分析 42
4-1-4 非恆溫熱性質分析 43
4-1-5 硬度及破裂韌性測試 44
4-1-6 壓縮測試 45
4-1-7 壓縮後之破斷面形貌 46
4-2 鎂鋅鈣金屬玻璃基材及其複材之4 mm及core-shell棒材 47
4-2-1 X光繞射分析 48
4-2-2 壓縮前之試片表面形貌與成分分析 49
4-2-3 非恆溫熱性質分析 49
4-2-4 硬度及破裂韌性測試 50
4-2-5 壓縮測試 51
4-2-6 壓縮後之破斷面形貌 52
第五章 結論 110
參考文獻 111
參考文獻 [1]. D. F. Williams, “Implantable prostheses”, Physics in Medicine & Biology, Vol. 25, 1980, pp. 611-636.
[2]. Mark P. Staiger, Alexis M. Pietak, Jerawala Huadmai and George Dias, “Magnesium and its alloy as orthopedic biomaterials: A review”, Biomaterials, Vol. 27, 2006, pp. 1728-1734.
[3]. Y. Xin, K. Huo, H. Tao, G. Tang and Paul K. Chu, “Influence of aggressive ions on the degradation behavior of biomedical magnesium alloy in physiological environment”, Acta Biomaterialia, Vol. 4, 2008, pp. 2008-2018.
[4]. D. M. Miskovic, K. Pohl, N. Birbilis, K. J. Laws and M. Ferry, “Examining the elemental contribution towards the biodegradation of Mg-Zn-Ca ternary metallic glasses”, Journal of Materials Chemistry B, Vol. 4, 2016, pp. 2679-2690.
[5]. Q. F. Li, H. R. Weng, Z. Y. Suo, Y. L. Ren, X. G. Yuan and K. Q. Qiu, “Microstructure and mechanical properties of bulk Mg-Zn-Ca amorphous alloys and amorphous matrix composites”, Materials Science and Engineering A, Vol. 487, 2008, pp. 301-308.
[6]. P. C. Wong, “Development of biodegradable Mg-Zn-Ca metallic glass for the application of orthopedic implant”, unpublished doctoral dissertation, National Yang-Ming University, 2017.
[7]. T. B. Matias, V. Roche, R. P. Nogueira, G. H. Asato, C. S. Kiminami, C. Bolfarini, W. J. Botta and A. M. Jorge, “Mg-Zn-Ca amorphous alloys for application as temporary implant: Effect of Zn content of the mechanical and corrosion properties”, Materials and Design, Vol. 110, 2016, pp. 188-195.
[8]. A. C. Lund and Christopher A. Schuh, “Topological and chemical arrangement of binary alloys during severe deformation”, Journal of Applied Physics, Vol. 95, 2004, pp. 4815-4822.
[9]. 吳學陞,新興材料-塊狀金屬玻璃金屬材料,工業材料,第149期,1999年。
[10]. A. Inoue, “Stabilization of metallic supercooled liquid and bulk amorphous alloys”, Acta Materialia, Vol. 48, 2000, pp. 279-306.
[11]. J. Kramer, “Amorphous Ferromagnetic in Iron-Carbon-Phosphorus Alloys”, J. Appl. Phys., vol. 19, 1934, pp. 37.
[12]. A. Brenner, D. E. Couch, E. K. Williams, J. Res. Natn. Bur. Stand, vol. 44, 1950, pp.109
[13]. W. Klement, R. Willens and P. Duwez, “Non-crystalline Structure in Solidified Gold-Silicon Alloys”, Nature Materials, vol. 187, 1960, pp. 869.
[14]. D. Turnbull, “Phase Changes”, Solid State Phys., vol. 3, 1956, pp.225.
[15]. D. Turnbull, “Amorphous solid formation and interstitial solution behavior in metallic alloy system”, J. Phys., vol. 35, 1974, pp. 1-10.
[16]. D. R. Uhlmann, J. F. Hays and Turnbull, “The effect of high pressure on crystallization kinetics with special reference to fused silica”, J. Phy. Chem. Glasses, vol. 7, 1966, pp. 159
[17]. H. A. Davies, “The formation of metallic glass”, J. Phys. Chem. Glasses, vol. 17, 1976, pp. 159.
[18]. H. S. Chen and C. E. Miller, “A rapid quenching technique for the preparation of thin uniform films of amorphous solids”, Review of Scientific Instruments, Vol. 41, 1970, pp. 1237-1238.
[19]. H. H. Liebermann and C. D. Graham, “Production of amorphous alloy ribbons and effects of apparatus parameters on ribbon dimensions”, IEEE Transactions on Magnetics, Vol. 6, 1976, pp. 921-923.
[20]. M. C. Narasimhan, “Continuous casting method for metallic strips”, United states patent and trademark office certificate of correction, 1980.
[21]. A. Inoue, T. Zhang and T. Masumoto, “Al–La–Ni amorphous alloys with a wide supercooled liquid region”, Materials Transactions, JIM, Vol. 30, 1989, pp. 965-972.
[22]. T. Zhang, A. Inoue and T. Masumoto, “Amorphous Zr-Al-TM (TM = Co, Ni, Cu) alloys with significant supercooled liquid region of over 100 K”, Materials Transactions, JIM, Vol. 32, 1991, pp. 1005-1010.
[23]. A. Inoue, A. Kato, T. Zhang, S. G. Kim and T. Masumoto, “Mg-Cu-Y amorphous alloys with high mechanical strengths produced by a metallic mold casting method”, Materials Transactions, JIM, Vol. 32, 1991, pp. 609-616.
[24]. A. Inoue, “High strength bulk amorphous alloys with low critical cooling rates (overview)”, Materials Transactions, JIM, Vol. 36, 1995, pp. 866-875
[25]. Y. K. Xu and J. Xu, “Ceramics particulate reinforced Mg65Cu20Zn5Y10 bulk metallic glass composites”, Scr. Mater., vol. 49, 2003, pp. 843-848.
[26]. H. Ma, L. L. Shi, J. Xu, Y. Li and E. Ma, “Discovering inch-diameter metallic glasses in three-dimensional composition space”, Applied Physics Letters, Vol. 87, 2005, pp. 181915.
[27]. D. G. Pan, H. F. Zhang, A. M. Wang and Z. Q. Hu, “Enhanced plasticity in Mg-based bulk metallic glass composite reinforced with ductile Nb particles”, Applied Physics Letters, Vol. 89, 2006, pp. 261904..
[28]. B. Zberg, Peter J. Uggowitzer and Jorg F. Loffler, “MgZnCa glasses without clinically observable hydrogen evolution for biodegradable implants”, Nature materials, Vol. 8, 2009, pp. 887-891.
[29]. R. W. Cahn, P. Hassen and E.J. Kramer, Materials Science and Technology, Vol. 9, New York, USA, 1991.
[30]. W. Paul, G. A. N. Connell and R. J. Temkin, “Amorphous germanium I. A model for the structural and optical properties”, Advances in Physics, Vol. 22, 1973, pp. 531-580.
[31]. K. L. Chapra, “Thin film phenomena”, McGraw-Hill, New York, 1969.
[32]. C. R. M. Afonso, C. Bolfarini, C. S. Kiminami, N. D. Bassim, M. J. Kaufman, M. F. Amateau, T. J. Eden and J. M. Galbraith, “Amorphous phase formation during spray forming of Al84Y3Ni8Co4Zr1 alloy”, Journal of Non-Crystalline Solids, Vol. 284, 2001, pp. 134-138.
[33]. A. Peker and W. L. Johnson, “A highly processable metallic glass: Zr41.2Ti13.8Cu12.5Ni10.0Be22.5”, Applied Physics Letters, Vol. 63, 1993, pp. 2342-2344.
[34]. P. G. Debenedetti and F. H. Stillinger, “Supercooled liquids and the glass transition”, Nature, Vol. 410, 2001, pp. 259-267.
[35]. H. S. Chen and D. Turnbull, “Evidence of a glass–liquid transition in a Gold-Germanium–Silicon alloy”, The Journal of Chemical Physics, Vol. 48, 1968, pp. 2560-2571.
[36]. Z. P. Lu and C. T. Liu, “A new glass-forming ability criterion for bulk metallic glasses”, Acta materialia, Vol. 50, 2002, pp. 3501-3512.
[37]. X. H. Du, C. Huang, C.T. Liu and Z.P. Liu, “New criterion of glass forming ability for bulk metallic glasses”, Journal of Applied Physics, Vol. 101, 2007, pp. 086108.
[38]. A. S. Argon, “Plastic deformation in metallic glasses”, Acta Metallurgica, Vol. 27, 1979, pp. 47-58.
[39]. F. Spaepen, “A microscopic mechanism for steady state inhomogeneous flow in metallic glasses”, Acta Metallurgica, Vol. 25, 1977, pp. 407-415.
[40]. A. Inoue, “Bulk amorphous alloys practical characteristics and applications, institute for material research”, Tohoku University, Sendai, Japan, 1999.
[41]. C. W. Chu, J. S. C. Jang, S. M. Chiu and J. P. Chu, “Study of the characteristics and corrosion behavior for the Zr-based metallic glass thin film fabricated by pulse magnetron sputtering process”, Thin Solid Films, Vol. 517, 2009, pp. 4930-4933.
[42]. 顧宜,複合材料,新文京開發出版公司,1992年。

[43]. L. J. Chang, J. S. C. Jang, B. C. Yang and J. C. Huang, “Crystallization and thermal stability of the Mg65Cu25−xGd10Agx (x = 0 - 10) amorphous alloys”, Journal of Alloys and Compounds, Vol. 434-435, 2007, pp. 221-224.
[44]. L. J. Chang, G. R. Fang, J. S. C. Jang, I. S. Lee, J. C. Huang and C. Y. A. Tsao, “Hot workability of the Mg65Cu20Y10Ag5 amorphous/ nanoZrO2 composite alloy within supercooled temperature region”, Key Engineering Materials, Vol. 351, 2007, pp. 103-108.
[45]. J. S. C. Jang and J. Y. Ciou, “Enhanced mechanical performance of Mg metallic glass with porous Mo particles”, Applied Physics Letters, Vol. 92, 2008, pp. 011930.
[46]. P. C. Wong, “Mechanical properties of magnesium based bulk meallic glass composites with the Ti particles”, unpublished Master′s thesis, National Central University, 2012.
[47]. M. S. Suei, “Influences of Ta and Ti-6Al-V particle Additions on the Mechanical Properties of MgZnCa-Based Amorphous Alloy”, unpublished Master′s thesis, National Central University, 2015.
[48]. Z. Zhang, F. Wu, G. He and J. Eckert, “Mechanical properties, damage and fracture mechanisms of bulk metallic glass materials”, Journal of Materials Science and Technology, Vol. 23, 2007, pp. 747-767.
[49]. T. H. Li, “Development and fabrication of the bio-compatible Ti-based metallic glass powders for additive manufacturing”, unpublished doctoral dissertation, National Central University, 2019.
指導教授 鄭憲清(Shian-Ching Jang) 審核日期 2020-8-13
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明