參考文獻 |
1. Ferlay, J., et al., Estimating the global cancer incidence and mortality in 2018: GLOBOCAN sources and methods. International Journal of Cancer, 2019. 144(8): p. 1941-1953.
2. Siegel, R.L., K.D. Miller, and A. Jemal, Cancer statistics, 2019. CA: A Cancer Journal for Clinicians, 2019. 69(1): p. 7-34.
3. Travis, W.D., et al., The 2015 World Health Organization classification of lung tumors: impact of genetic, clinical and radiologic advances since the 2004 classification. Journal of thoracic oncology, 2015. 10(9): p. 1243-1260.
4. Kocher, F., et al., Longitudinal analysis of 2293 NSCLC patients: a comprehensive study from the TYROL registry. Lung Cancer, 2015. 87(2): p. 193-200.
5. Torre, L.A., R.L. Siegel, and A. Jemal, Lung Cancer Statistics. Adv Exp Med Biol, 2016. 893: p. 1-19.
6. Wakelee, H.A., et al., Lung cancer incidence in never smokers. J Clin Oncol, 2007. 25(5): p. 472-8.
7. Yano, T., et al., Never-smoking nonsmall cell lung cancer as a separate entity: clinicopathologic features and survival. Cancer, 2008. 113(5): p. 1012-8.
8. Toh, C.K., et al., Never-smokers with lung cancer: epidemiologic evidence of a distinct disease entity. J Clin Oncol, 2006. 24(15): p. 2245-51.
9. Paez, J.G., et al., EGFR mutations in lung cancer: correlation with clinical response to gefitinib therapy. Science, 2004. 304(5676): p. 1497-500.
10. Shi, Y., et al., A prospective, molecular epidemiology study of EGFR mutations in Asian patients with advanced non-small-cell lung cancer of adenocarcinoma histology (PIONEER). J Thorac Oncol, 2014. 9(2): p. 154-62.
11. Passaro, A., et al., Activity of EGFR TKIs in Caucasian Patients With NSCLC Harboring Potentially Sensitive Uncommon EGFR Mutations. Clin Lung Cancer, 2019. 20(2): p. e186-e194.
12. Rusch, V., et al., Differential expression of the epidermal growth factor receptor and its ligands in primary non-small cell lung cancers and adjacent benign lung. Cancer research, 1993. 53(10): p. 2379-2385.
13. Fukuoka, M., et al., Multi-institutional randomized phase II trial of gefitinib for previously treated patients with advanced non-small-cell lung cancer (The IDEAL 1 Trial) [corrected]. J Clin Oncol, 2003. 21(12): p. 2237-46.
14. Wu, Y.L., et al., Afatinib versus gemcitabine/cisplatin for first-line treatment of Chinese patients with advanced non-small-cell lung cancer harboring EGFR mutations: subgroup analysis of the LUX-Lung 6 trial. Onco Targets Ther, 2018. 11: p. 8575-8587.
15. Wu, Y.L., et al., Erlotinib versus gemcitabine/cisplatin in Chinese patients with EGFR mutation-positive advanced non-small-cell lung cancer: Crossover extension and post-hoc analysis of the ENSURE study. Lung Cancer, 2019. 130: p. 18-24.
16. Wieduwilt, M.J. and M.M. Moasser, The epidermal growth factor receptor family: biology driving targeted therapeutics. Cell Mol Life Sci, 2008. 65(10): p. 1566-84.
17. Solca, F., et al., Target binding properties and cellular activity of afatinib (BIBW 2992), an irreversible ErbB family blocker. J Pharmacol Exp Ther, 2012. 343(2): p. 342-50.
18. Mok, T.S., et al., Improvement in Overall Survival in a Randomized Study That Compared Dacomitinib With Gefitinib in Patients With Advanced Non-Small-Cell Lung Cancer and EGFR-Activating Mutations. J Clin Oncol, 2018. 36(22): p. 2244-2250.
19. Wu, Y.L., et al., Dacomitinib versus gefitinib as first-line treatment for patients with EGFR-mutation-positive non-small-cell lung cancer (ARCHER 1050): a randomised, open-label, phase 3 trial. Lancet Oncol, 2017. 18(11): p. 1454-1466.
20. Karachaliou, N., et al., EGFR first- and second-generation TKIs—there is still place for them in EGFR -mutant NSCLC patients. 2018, 2018: p. S23-S47.
21. Lau, S.C., et al., Outcome Differences Between First- and Second-generation EGFR Inhibitors in Advanced <em>EGFR</em> Mutated NSCLC in a Large Population-based Cohort. Clinical Lung Cancer, 2019. 20(5): p. e576-e583.
22. Cross, D.A., et al., AZD9291, an irreversible EGFR TKI, overcomes T790M-mediated resistance to EGFR inhibitors in lung cancer. Cancer Discov, 2014. 4(9): p. 1046-61.
23. Soria, J.-C., et al., Osimertinib in Untreated EGFR-Mutated Advanced Non–Small-Cell Lung Cancer. 2017. 378(2): p. 113-125.
24. Takeda, M. and K. Nakagawa, First- and Second-Generation EGFR-TKIs Are All Replaced to Osimertinib in Chemo-Naive EGFR Mutation-Positive Non-Small Cell Lung Cancer? Int J Mol Sci, 2019. 20(1).
25. Gu, J., et al., TP53 mutation is associated with a poor clinical outcome for non-small cell lung cancer: Evidence from a meta-analysis. Mol Clin Oncol, 2016. 5(6): p. 705-713.
26. Qin, K., et al., Prognostic value of TP53 concurrent mutations for EGFR- TKIs and ALK-TKIs based targeted therapy in advanced non-small cell lung cancer: a meta-analysis. BMC Cancer, 2020. 20(1): p. 328.
27. Toyooka, S., T. Tsuda, and A.F. Gazdar, The TP53 gene, tobacco exposure, and lung cancer. Hum Mutat, 2003. 21(3): p. 229-39.
28. Vogelstein, B., D. Lane, and A.J. Levine, Surfing the p53 network. Nature, 2000. 408(6810): p. 307-10.
29. Kastenhuber, E.R. and S.W. Lowe, Putting p53 in Context. Cell, 2017. 170(6): p. 1062-1078.
30. Kato, S., et al., Understanding the function-structure and function-mutation relationships of p53 tumor suppressor protein by high-resolution missense mutation analysis. Proc Natl Acad Sci U S A, 2003. 100(14): p. 8424-9.
31. Lehmann, B.D. and J.A. Pietenpol, Targeting mutant p53 in human tumors. J Clin Oncol, 2012. 30(29): p. 3648-50.
32. Raj, N. and L.D. Attardi, The Transactivation Domains of the p53 Protein. Cold Spring Harb Perspect Med, 2017. 7(1).
33. Fischer, N.W., et al., p53 oligomerization status modulates cell fate decisions between growth, arrest and apoptosis. Cell Cycle, 2016. 15(23): p. 3210-3219.
34. Malkin, D., Li-fraumeni syndrome. Genes Cancer, 2011. 2(4): p. 475-84.
35. Lomax, M.E., et al., Characterization of p53 oligomerization domain mutations isolated from Li-Fraumeni and Li-Fraumeni like family members. Oncogene, 1998. 17(5): p. 643-9.
36. McKinney, K., et al., p53 linear diffusion along DNA requires its C terminus. Mol Cell, 2004. 16(3): p. 413-24.
37. Göhler, T., et al., Specific interaction of p53 with target binding sites is determined by DNA conformation and is regulated by the C-terminal domain. J Biol Chem, 2002. 277(43): p. 41192-203.
38. Huang, Y.H., et al., The Association of Acquired T790M Mutation with Clinical Characteristics after Resistance to First-Line Epidermal Growth Factor Receptor Tyrosine Kinase Inhibitor in Lung Adenocarcinoma. Cancer Res Treat, 2018. 50(4): p. 1294-1303.
39. Ross Ihaka, R.G., The R Project for Statistical Computing.
40. Poeta, M.L., et al., TP53 mutations and survival in squamous-cell carcinoma of the head and neck. N Engl J Med, 2007. 357(25): p. 2552-61.
41. Molina-Vila, M.A., et al., Nondisruptive p53 mutations are associated with shorter survival in patients with advanced non-small cell lung cancer. Clin Cancer Res, 2014. 20(17): p. 4647-59.
42. Liu, Y., et al., Mutations in exon 8 of TP53 are associated with shorter survival in patients with advanced lung cancer. Oncol Lett, 2019. 18(3): p. 3159-3169.
43. Hou, H., et al., Concurrent TP53 mutations predict poor outcomes of EGFR-TKI treatments in Chinese patients with advanced NSCLC. Cancer Manag Res, 2019. 11: p. 5665-5675.
44. Sorrell, A.D., et al., Tumor protein p53 (TP53) testing and Li-Fraumeni syndrome : current status of clinical applications and future directions. Mol Diagn Ther, 2013. 17(1): p. 31-47.
45. Phang, B.H., et al., Amino-terminal p53 mutations lead to expression of apoptosis proficient p47 and prognosticate better survival, but predispose to tumorigenesis. Proc Natl Acad Sci U S A, 2015. 112(46): p. E6349-58.
46. Canale, M., et al., Impact of TP53 Mutations on Outcome in EGFR-Mutated Patients Treated with First-Line Tyrosine Kinase Inhibitors. Clin Cancer Res, 2017. 23(9): p. 2195-2202.
47. Labbé, C., et al., Prognostic and predictive effects of TP53 co-mutation in patients with EGFR-mutated non-small cell lung cancer (NSCLC). Lung Cancer, 2017. 111: p. 23-29. |