以作者查詢圖書館館藏 、以作者查詢臺灣博碩士 、以作者查詢全國書目 、勘誤回報 、線上人數:24 、訪客IP:18.217.195.183
姓名 黃佳容(Jia-Rong Huang) 查詢紙本館藏 畢業系所 材料科學與工程研究所 論文名稱 直接電漿/熱氧化成長一維氧化銦奈米結構之成長機制探討
(Growth mechanism of one-dimensional indium oxide nanostructures by direct plasma/thermal oxidation)相關論文 檔案 [Endnote RIS 格式] [Bibtex 格式] [相關文章] [文章引用] [完整記錄] [館藏目錄] [檢視] [下載]
- 本電子論文使用權限為同意立即開放。
- 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
- 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。
摘要(中) 本研究以電漿迴旋共振化學氣相沉積法成功製備出一維氧化銦奈米結構,但在不同氧分壓下成長出了四種氧化銦奈米結構如垂直成長的奈米線、粗糙球殼、海膽狀成長的奈米線和實心球,因此啟發了對此的探討。
我們知道在電漿系統下可以高度解離氣體分子去形成高反應性的氧原子,但在不同氧分壓下,氧吸附於氧化物表面的反應程度卻不同,而推測是否在電漿處理下有助於表面的升溫並強化表面活化的可能性,因此我們將透過直接熱氧化去了解熱對銦奈米粒子的影響有多少,但在此途徑要成長出一為氧化銦奈米結構是需要夠厚的氧化層,相比於直接電將氧化是可以在奈米尺寸且低溫下成長,代表著兩者有著大大不同的成長機制,而熱氧化目前尚無法進行其他分析而進行機制的闡述。
但在電漿的分析我們利用OES針對各氧激發態的特徵波段所量測到的強度去比對各氧分壓所繪製出的關係中,來得知是否是因所產生的氧自由基有所改變才導致形成不同的氧化銦奈米結構,可以知道的是氧自由基越多越容易反應成長一維奈米結構,但卻在氧自由基的解離量數對各氧分壓的關係圖中,發現當氧分壓過高時電漿解離出的氧原子濃度會大幅下降,因此可驗證出氧化反應將會受到高濃度未解離的氧分子影響。隨著氧分壓降低發現氧激發態777.4波段強度逐漸下降但氧原子的解離量卻是逐漸的上升,此外,因為了降低至更低的氧分壓,增加了氬氣的比率,也於氬激發態750.2對各氧分壓的關係圖中,觀察到越低氧分壓下強度明顯上升,而在氬和氧氣中性物質的相互反應中,氬激發態的能量足以將氧分子解離,產生的氧自由基能量較低,但在氬激發態相互碰撞下所產生的正電荷氬離子對基板的貢獻而加速了表面擴散。因此在成長一維氧化銦奈米結構中,因氧分子或原子的吸附造成了氧化反應不同,但可透過離子對基板轟擊下使表面活化加速表面擴散而使氧化程度大幅提升。摘要(英) In this study, one-dimensional indium oxide nanostructures were successfully prepared by plasma cyclotron resonance chemical vapor deposition. However, four indium oxide nanostructures have grown under different oxygen partial pressures, such as vertically grown nanowires, rough spherical shells, sea urchin-like nanowires and solid balls. So it inspired the discussion on this.
We know that in a plasma system, gas molecules can be highly dissociated to form highly reactive oxygen atoms, but under different oxygen partial pressures, the degree of reaction of oxygen adsorption on the oxide surface is different. It is speculated whether the plasma treatment will help the surface heat up and strengthen the possibility of surface activation. Therefore, we will use direct thermal oxidation to understand how much heat affects indium nanoparticles. But to grow an indium oxide nanostructure in this way, a thick enough oxide layer is required. Compared with direct electro-oxidation, it can grow at nanometer size and low temperature, which means that the two have greatly different growth mechanisms, and thermal oxidation is currently unable to conduct other analysis to explain the mechanism.
However, in the analysis of plasma, we use the intensity measured by OES for the characteristic band of each oxygen excited state to compare the relationship drawn by each oxygen partial pressure. It can be known that the more excited oxygen states, the easier it is to grow a one-dimensional nanostructure. But in the graph of the dissociation amount of oxygen free radicals versus each oxygen partial pressure, it is found that when the oxygen partial pressure is too high, the concentration of oxygen atoms dissociated from the plasma will drop significantly, so it can be verified that the oxidation reaction will be high. The concentration of undissociated oxygen molecules is affected. As the oxygen partial pressure decreases, it is found that the intensity of the 777.4 band of the oxygen excited state gradually decreases, but the dissociation amount of oxygen atoms is gradually increased. In addition, in order to reduce the oxygen partial pressure, we increased the ratio of argon. Therefore, we also used the argon excited state 750.2 to graph the relationship between the oxygen partial pressures, and observed that the lower the oxygen partial pressure, the intensity also increased significantly. In the mutual reaction of argon and oxygen neutral substances, the energy of the excited state of argon is sufficient to dissociate oxygen molecules, and the generated oxygen radicals have lower energy, but the positively charged argon ions generated under the collision of the excited state of argon The contribution to the substrate accelerates surface diffusion. Therefore, in the growth of one-dimensional indium oxide nanostructures, the oxidation reaction is different due to the adsorption of oxygen molecules or atoms, but the surface activation can be accelerated by the ion bombardment of the substrate, and the degree of oxidation can be greatly increased.關鍵字(中) ★ 氧化銦
★ 一維奈米結構
★ 電漿輔助
★ 低溫生長
★ 熱氧化關鍵字(英) ★ indium oxide
★ one-dimensional nanostructures
★ plasma-assisted
★ thermal oxidation論文目次 摘要 i
Abstract ii
致謝 iv
目錄 v
圖目錄 vi
表目錄 viii
第一章 緒論 1
第二章 基礎理論及文獻回顧 4
2-1金屬氧化行為 4
2-1-1 金屬氧化速率方程 5
2-1-2 Wagner mechanism 7
2-1-3 Uhlig mechanism 8
2-2氧化銦一維奈米結構成長法 11
2-3 金屬氧化物奈米線的成長機制 13
2-3-1 直接熱氧成長機制 13
2-3-2 電漿輔助氧化成長機制 18
第三章 研究方法與設備 25
3-1金屬銦奈米粒子之還原 25
3-2 電漿輔助成長氧化銦奈米結構之製備 25
3-3 直接熱成長氧化銦奈米結構之製備 26
3-4 實驗分析設備 27
第四章 結果與討論 28
4-1 直接電漿氧化成長氧化銦奈米線 28
4-1-1 氧分壓對氧化銦奈米線形貌變化 28
4-1-2 溫度對氧化銦奈米線形貌變化 29
4-2 銦奈米粒子之直接熱氧化反應 30
4-2-1 製程溫度對氧化銦生成行為影響 30
4-2-2 氧分壓對氧化銦生成行為影響 31
4-3 一維氧化銦結構之成長機制探討 34
4-3-1奈米粒子氧化之Kirkendall效應 35
4-3-2 電漿條件對氧化速率之影響 37
4-3-3 電漿環境下一維奈米結構之成核及成長行為 43
第五章 結論 44
參考文獻 45參考文獻 [1] Rupesh S. Devan , Ranjit A. Patil , Jin-Han Lin , and Yuan-Ron Ma. Adv. Funct.Mater DOI: 10.1002/adfm.201201008 (2012).
[2] S. Iijima, Nature 354 56 (1991).
[3] Lu Yuan, and Guangwen Zhou. VOLUME 4, NUMBER 1, , ISSN : 2229-7383. (2012)
[4] E. Comini, C. Baratto, G. Faglia, M. Ferroni, A. Vomiero, G. Sberveglieri. Progress in Materials Science 54 1-67 (2009).
[5] By Zhong L. Wang, Adv. Mater 12, No.17 (2000).
[6] Andrei Kolmakov and Martin Moskovits. Annu. Rev. Mater. Res 34:151–80 (2004).
[7] John C. C. Fan and John B. Goodenough. Journal of Applied Physics 48, 3524 (1977)
[8] C. Li, D. Zhang, S. Han, X. Liu, T. Tang, B. Lei, Z. Liu, anf C. Zhou. Ann. N.Y. Acad. Sci. 1006: 104–121 (2003).
[9] Russell G. Egdell. Springer Series in Surface Sciences 58, DOI 10.1007/978-3-319-14367-5_12 (2015).
[10] U. Cvelbar , J. Phys. D: Appl. Phys., 44,174014(2011).
[11] P. Kofstad. Elsevier Applied Science, London (1988).
[12] HERBERT H. UHLIG, ACTA METBLLURGICA, VOL. 4, 541(1956)
[13] ] M. J. Zheng, L. D. Zhang, G. H. Li, X. Y. Zhang, and X. F. Wang, Appl. Phys. Lett., 79, 6, 839 (2001)
[14] Shih-Chieh Chang and Michael H. Huang, J. Phys. Chem. C., 112, 2304 (2008)
[15] 2] Xiao-Ping Shen, Hong-Jiang Liu, Xin Fan, Yuan Jiang, Jian-Ming Hong, Zheng Xu, J. Cryst. Growth.,276 471 (2005)
[16] C. Li, D. Zhang, S. Han, X. Liu, T. Tang and C. Zhou, Adv. Mater., 15, 143 (2003).
[17] X. S. Peng, G. W. Meng, J. Zhang, X. F. Wang, Y. W. Wang, C. Z. Wang and L. D. Zhang, J. Mater. Chem., 12, 1602–1605 (2002).
[18] X.C. Wu, J.M. Hong, Z.J. Han, Y.R. Tao, Chem. Phys. Lett., 373 ,28–32 (2003).
[19] You-Guo Yan, Ye Zhang, Hai-Bo Zeng, and Li-De Zhang, Cryst. Growth Des.,7, 940-943 (2007).
[20] L. dai, X.l. chen, J.k. jian, M. he, T. zhou, B.q. hu, Appl. Phys.75, 687–689 (2002) [21] Zeng, FH; Zhang, X; Wang, J,15 ,596-600,(2004)
[22] Y.-C.Wang, C.-Y.Chen, C.-W.Kuo, T.-M.Kuan, C.-Y.Yu and I.-C.Chen, Physica Status Solidi (a)213, 2259-2263 (2016)
[23] R. S. Wagner, W. C. Ellis, Appl. Phys. Lett., 4, 89(1964).
[24] W. A. de Heer, A. Chatelain, and D. Ugarte, Science, 270, 1179 (1995); Changhao Liang, Guowen Meng, Yong Lei, Fritz Phillipp, and Lide Zhang, Adv. Mater., 13, 1330-1333 (2001).
[25] M. Yazawa, M. Koguchi, A. Muto, K. Hiruma, Adv. Mater., 5, 577 (1993).
[26] X. S. Peng, G. W. Meng, J. Zhang, X. F. Wang, Y. W. Wang, C. Z. Wang and L. D. Zhang, J. Mater. Chem., 12, 1602–1605 (2002).
[27] X.C. Wu, J.M. Hong, Z.J. Han, Y.R. Tao, Chem. Phys. Lett., 373 ,28–32 (2003).
[28] You-Guo Yan, Ye Zhang, Hai-Bo Zeng, and Li-De Zhang, Cryst. Growth Des.,7, 940-943 (2007).
[29] Zhong Lin Wang. American Chemical Society VOL. 2,NO. 10,1987–1992 (2008).
[30] Peidong Yang and Charles M. Lieber. J. Mater. Res., Vol. 12, No. 11, Nov (1997). [31] Mingji Chen, Yumei Yue, and Yang Ju. JOURNAL OF APPLIED PHYSICS111, 104305 (2012).
[32] U. Cvelbar, K. Ostrikov, I. Levchenko, M. Mozetic and M. K. Sunkara, Appl. Phys. Lett., 94, 211502 (2009).
[33] K.H. Mueller,J. Appl. Phys., 58, 2573(1985).
[34] S. Sriraman, S. Agrawal, E. S. Aydil and D. Maroudas, Nature., 418, 62(2002).
[35] I. Levchenko, K. Ostrikov and S. Xu, J. Phys. D: Appl. Phys., 42, 125207(2009).
[36] K. Ostrikov, Rev. Mod. Phys., 77, 489 (2005).
[37] K. Ostrikov and A. B. Murphy,J. Phys. D: Appl. Phys.,40, 2223 (2007).
[38] Urosˇ Cvelbar, Zhiqiang Chen, Mahendra K. Sunkara, and Miran Mozeticˇ. Small 4, No. 10, 1610–1614 (2008).
[39] Hideki Ono and Satoru Iizuka. Journal of Nanomaterials Volume (2011).
[40] Gaskell David “Introduction to the Thermodynamics of Materials” (2003)
[41] Uhlig, H. “Initial Oxidation Rate of Metals and the Logarithmic Equation” Acta Metallurgica, v4 (1956)
[42] Chia-Yen Hsu, Kai-Hsiang Chang, Jyun-An Gong, Jonas Tir´en, Yuan-Yao Li and Akiyoshi Sakoda RSC Adv., 5, 103884(2015)
[43] S. Ren, Y.F. Bai, Jun Chen, S.Z. Deng, N.S. Xu, Q.B. Wu, Shihe Yang, Materials Letters 61 666–670 (2007)
[44] Mingji Chen, Yumei Yue, and Yang Ju, JOURNAL OF APPLIED PHYSICS 111, 104305 (2012)
[45] Manmeet Kaur, K.P. Muthe, S.K. Despande, Shipra Choudhury, J.B. Singh, Neetika Verma, S.K. Gupta, J.V. Yakhmi, Journal of Crystal Growth 289 670–675 (2006)
[46] P Hiralal, H E Unalan, K G UWijayantha, AKursumovic, D Jefferson, J L MacManus-Driscoll and G A J Amaratunga, IOP PUBLISHING,Nanotechnology 19 455608 7pp (2008)
[47] A.U. Saadat. J. Phys. D Appl. Phys. 27 356459 (1994).
[48] L.N. Kantorovich 1, M.J. Gillan. Surface Science 374 373-386 (1997).
[49] Marcel Fiebrandt , Nikita Bibinov and Peter Awakowicz, Plasma Sources Sci. Technol. 29 045018 18pp (2020)
[50] C. Lao, A. Gamero, A. Sola, Ts. Petrova, E. Benova, G. M. Petrov, and I. Zhelyazkov, JOURNAL OF APPLIED PHYSICSVOLUME 87, (2000)
[51] Toshikazu Sato and Toshiaki Makabe, J. Phys. D: Appl. Phys. 41 035211 6pp(2008)
[52] R. Messier, J.E. Yehoda and L.J. Pilione, in SM. Rossnagel, J.J. Cuomo and W.D. Westwood (eds.), Handbook of Plasma Pro- cessing Technology, Part VI, Noyes Publ., p. 448. (1989)指導教授 陳一塵(I-Chen Chen) 審核日期 2020-8-19 推文 facebook plurk twitter funp google live udn HD myshare reddit netvibes friend youpush delicious baidu 網路書籤 Google bookmarks del.icio.us hemidemi myshare