博碩士論文 106329014 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:41 、訪客IP:52.15.187.50
姓名 吳季倫(Chi-Lun Wu)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 鑭金屬薄膜應用於氮化鋁鎵/氮化鎵元件之歐姆接觸特性研究
(The Role of Lanthanum on Ohmic Contacts to AlGaN/GaN High Electron Mobility Transistors)
相關論文
★ 開發鎵奈米粒子沉浸於可拉伸聚合物之可調式電漿子結構★ 利用等效差分時域(FDTD)模擬分析自組裝鎵奈米顆粒嵌入可拉伸彈性材料光學性質探討
★ 無鉛銲料錫銀銦與銅基板的界面反應★ 高度反射性銀/鑭雙層p型氮化鎵歐姆接觸之性質研究
★ 以電子迴旋共振化學氣相沉積氫化非晶矽薄膜之熱處理結晶化研究★ 研究奈晶矽與非晶矽之多層結構經熱退火處理後之性質及其在PIN太陽能電池吸收層中之應用
★ 利用陽極氧化鋁模板製備銀奈米結構陣列於玻璃基板★ 利用電子迴旋共振化學氣相沉積法沉積氫化非晶矽薄膜探討其應力與結晶行為
★ 高反射低電阻銀鑭合金P型氮化鎵歐姆接觸之研究★ 陽極氧化鋁模板製備銀奈米粒子陣列及其表面增強拉曼散射效應之應用
★ 製備磷摻雜奈米矽晶氧化矽薄膜及其於太陽能電池之應用★ 陽極氧化鋁模板製備銀奈米粒子陣列及其光學性質
★ 以電流控制方式快速製備孔洞間距400至500奈米之陽極氧化鋁模板★ 利用濕式氧化法製備氧化矽薄膜應用於矽晶太陽能電池表面鈍化技術之研究
★ 磷摻雜矽奈米晶粒嵌入於氮化矽基材之材料成長與特性分析★ 利用電子迴旋共振化學氣相沉積法製備多層SiOxNy:H/SiCxNy:H抗反射薄膜及其於矽基太陽能電池之應用
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 氮化鋁鎵/氮化鎵高電子遷移率電晶體 (high electron mobility transistors, HEMTs) 由於具有高載子密度與遷移率之二維電子氣 (two-dimensional electron gas, 2DEG),因此極具潛力成為下一代高頻電子及高功率電晶體之主流材料。為了製作出高效率HEMT元件,低特徵接觸電阻 (specific contact resistance, ρc) 與良好熱穩定之歐姆接觸電極是必須達成的技術指標。此外為了與矽基功率元件競爭並降低其製作成本,開發以互補式金氧半導體 (complementary metal-oxide-semiconductor) 標準製程製造AlGaN/GaN HEMTs於矽晶圓上成為近幾年來國學研單位的研究重點。
本實驗將先探討不同鈦鋁原子比在快速熱退火處理後之電性和表面形態之影響,並研究開發加入鑭 (Lanthanum) 金屬薄膜於歐姆接觸電極中,藉由調控其他金屬層材料厚度,配合適當的退火溫度與氛圍和鑭金屬的使用下,可大幅降低特徵接觸電阻,使鈦/鋁/鑭/銅歐姆接觸可得到低特徵接觸電阻為6.4×10-6 ohm-cm2,與傳統鈦/鋁/鎳/金接觸相比為2.9×10-5 ohm-cm2。表面形態與傳統鈦/鋁/鎳/金、鈦/鋁/鎳/銅和鈦/鋁/銅歐姆接觸金屬比較,得到較為平坦之金屬表面。
摘要(英) AlGaN/GaN high electron mobility transistors (HEMTs) have been considered as a promising candidate for radio frequency/microwave and power electronics applications because of its high mobility and density of two-dimensional electron gas (2DEG) at the hetero-interface. In order to fabricate high efficiency HEMT devices, ohmic contacts with low specific contact resistance and high thermal stability are necessary. In order to compete with Si-based power devices and lower manufacturing cost, it is desired for AlGaN/GaN HEMTs fabricated on Si wafers with standard CMOS processes. Therefore, Au-free ohmic contacts have recently drawn considerable attention.
In this experiment, we first investigate the influence of different Ti/Al atomic ratios on specific contact resistance and surface morphology after thermal annealing and develop using Lanthanum thin film in ohmic contact. By optimizing the thickness of other metal layers and annealing temperature and the thickness of Lanthanum, we can obtain a low specific contact resistance of 6.4×10-6 ohm-cm2 by using Ti/Al/La/Cu ohmic contacts comparing to 2.9×10-5 ohm-cm2 by using Ti/Al/Ni/Au ohmic contacts. The surface morphology is compared with traditional Ti/Al/Ni/Au, Ti/Al/Ni/Cu and Ti/Al/Cu ohmic contacts, we can acquire a much smoother surface.
關鍵字(中) ★ 氮化鋁鎵/氮化鎵異質結構
★ 歐姆接觸
★ 特徵接觸電阻
★ 高電子遷移率電晶體
★ 二維電子氣
關鍵字(英) ★ AlGaN/GaN heterostructures
★ ohmic contacts
★ specific contact resistance
★ high electron mobility transistors
★ two-dimensional electron gas
論文目次 摘要 i
Abstract ii
致謝 iii
目錄 iv
圖目錄 vi
表目錄 ix
第一章 緒論 1
1.1前言 1
1.2 研究背景 4
第二章 基礎理論及文獻回顧 5
2.1 金屬半導體接觸理論 5
2.1.1 整流接觸 (Rectified contact) 6
2.1.2 非整流接觸 (Non-rectified contact) 8
2.2 傳輸線模型原理 10
2.3 n型氮化鎵 (n-type GaN) 之發展 16
2.4 氮化鋁鎵/氮化鎵異質結構 (AlGaN/GaN heterostructures) 的歐姆接觸發展 23
2.4.1 氮化鋁鎵/氮化鎵高電子遷移率電晶體之歐姆接觸金屬種類 (Category of ohmic contact metals on AlGaN/GaN HEMTs) 23
2.4.2 凹槽式氮化鋁鎵/氮化鎵高電子遷移率電晶體 (Recessed AlGaN/GaN HEMTs) 37
第三章 研究方法與步驟 40
特徵接觸電阻量測與測試結構製備 40
實驗流程 40
氮化鋁鎵/氮化鎵高電子遷移率電晶體晶片結構 41
利用微影製程與電子束蒸鍍製作CTLM電極量測結構 41
特性分析 44
第四章 結果與討論 45
4.1 快速熱退火處理對Ti/Al雙層接觸結構之影響 45
4.1.1 鈦鋁原子比對Ti/Al接觸結構表面形態之影響 45
4.1.2 鈦鋁原子比對Ti/Al接觸結構特徵接觸電阻之影響 49
4.2 快速熱退火處理對Ti/Al/Cu接觸結構之影響 50
4.3 快速熱退火處理對Ti/Al/La/Cu接觸結構之影響 55
4.3.1 鑭金屬厚度對特徵接觸電阻之影響 55
4.3.2 Ti/Al/La/Cu接觸在快速熱退火處理後表面形態之影響 56
4.3.3 Ti/Al/La/Cu接觸在快速熱退火處理後特徵接觸電阻之影響 58
第五章 結論 60
參考文獻 61
參考文獻 [1] M. Kuzuhara, Jpn. J. Appl. Phys. 55, 070101 (2016).
[2] S. Nakamura, Appl. Phys. Lett. 72, 2014 (1998).
[3] B. Poti, Electronics Lett. 39, 1747 (2003).
[4] X. Sun, Sci. Rep. 5, 16819 (2015).
[5] K. Shinohara, IEEE Electron Device Lett. 39, 417 (2018).
[6] U. K. Mishra, IEEE, 96, 287 (2008).
[7] Power GaN 2017: Epitaxy, Devices, Applications, and Technology Trend (2017).
[8] F. Sacconi, IEEE Transactions on Electron Devices. 48, 450 (2001).
[9] E. H. Rhoderick and R. H. Williams, Metal-Semiconductor Contacts, 2nd Edition, 1988.
[10] J. Bardeen, Phys. Rev. 71,717(1947).
[11] H. Murrmann, IEEE Trans. Electron Dev. ED-16, 1022 (1969).
[12] H.H. Berger, J. Electrochem. Soc. 119, 507 (1972).
[13] Dieter K. Schroder, Semiconductor material and device characterization, IEEE Press John wiley & sons (2006).
[14] W. Shockley, Rep. No. AFAL-TDR-64-207, Air Force Avionics Lab (1964).
[15] J. H. Klootwijk, Proc. IEEE 2004 Int. Conference on Microelectronic Test Structure. 17, 247 (2004).
[16] D. R. Lide, CRC Handbook of Chemistry and Physics. pp. 12 (1996).
[17] J. S. Foresi, Appl. Phys. Lett. 62, 2859 (1993).
[18] Y. F.Wu, Solid-State Electron. 41, 165 (1997).
[19] Q. Z. Liu, S. S. Lau, Solid-State Electron. 42, 677 (1998).
[20] Y. Kribes, Semicond. Sci. Technol. 12 1500 (1997).
[21] C. J. Lu, J. Appl. Phys. 94. 245 (2003).
[22] M. E. Lin, Appl. Phys. Lett. 64, 1003 (1994).
[23] R. France, Appl. Phys. Lett. 90, 062115 (2007).
[24] S. Pookpanratana, Appl. Phys. Lett. 93, 172106 (2008).
[25] K. Tone, H. Tokuda and M. Kuzuhara, Proceedings IEE (2013).
[26] Y. Liu, M. K. Bera and L. M. Kyaw, World Academy of Science, Engineering and Technology 6, 530 (2012).
[27] C. M. Pelto, J. Appl. Phys. 92, 4283 (2002).
[28] M. Placidi, Appl. Surf. Sci. 255, 6057 (2009).
[29] N. Thierry-Jebali, Materials Science Forum. 778, 1185 (2014).
[30] E. F. Chor, J. Appl. Phys. 90, 1242 (2001).
[31] H. Kim, Appl. Phys. Lett. 93, 192106 (2008).
[32] M. A. Borysiewicz, Solid-State Electronics. 94, 15 (2014)
[33] S. N. Mohammad, J. Appl. Phys. 95, 7940 (2004).
[34] M. W. Fay, J. Appl. Phys. 96, 5588 (2004).
[35] T. K. Zywietz, Appl. Phys., Lett. 74, 1695 (1999).
[36] A. Motayed, J. Appl. Phys. 93, 1087 (2003).
[37] F.M. Mohammed, J. Appl. Phys. 100, 023708 (2006).
[38] V. Rajagopal Reddy, Semicond. Sci. Technol. 19, 975 (2004).
[39] F. Iucolano, J. Appl. Phys. 100, 123706 (2006).
[40] C. Lu, J. Appl. Phys. 91, 9218 (2002).
[41] L. Wang, J. Appl. Phys. 98, 106105 (2005).
[42] H. Kim, Appl. Phys. Lett. 93, 192106 (2008).
[43] Z. Fan, Appl. Phys. Lett. 68, 1672 (1996).
[44] S. Ruvimov, Appl. Phys. Lett. 69, 1556 (1996).
[45] B. Van Daele, Appl. Phys. Lett. 87, 061905 (2005).
[46] B. P. Luther, Appl. Phys. Lett. 70, 57 (1997).
[47] J. W. Jeon, Appl. Phys. Lett. 94, 042102 (2009).
[48] J. S. Kwak, Appl. Phys. Lett. 80, 3554 (2002).
[49] A. Fontserè, Microelectronic Engineering 88, 3140 (2011).
[50] G. Greco, Appl. Surf. Sci. 383, 324 (2016).
[51] T. V. Blank, Tech. Phys. Lett. 30, 806 (2004).
[52] T. V. Blank, Semiconductors 41, 1263 (2007).
[53] V. N. Bessolov, Semiconductors 42, 1315 (2008).
[54] A.V. Sachenko, J.Appl.Phys. 111, 083701 (2012).
[55] A.V. Sachenko, Phys. St. Sol. C 10, 498 (2013).
[56] V. Sachenko, A.E. Belyaev, Semiconductors 48, 1308 (2014).
[57] A. Motayed, K. A. Jones, M. A. Derenge, J. Appl. Phys. 95, 1516 (2004).
[58] T. K. Zywietz, J. Neugebauer, and M. Scheffler, Appl. Phys. Lett. 74, 1695 (1999).
[59] A. Motayed, M. Jah, A. Sharma, W. T. Aderson, J. Vac. Sci. Technol. B 22, 663 (2004).
[60] D. Selvanathan, L. Zhou, V. Kumar, and I. Adesida, Phys. Stat. Sol. (a) 194, 583 (2002).
[61] H. S. Kim, Y. H. Lee, G. Y. Yeom, Materials Science and Engineering B50 82, (1997).
[62] H. S. Lee, D. S. Lee, T. Palacios, IEEE Electron Device Lett. 32, 623 (2011).
[63] A. Firrincieli, B. De Jaeger, S. You, Jpn. J. Appl. Phys. 53, 04EF01 (2014).
[64] H. C. Seo, P. Chapman, H. I. Cho, J. H. Lee, Appl. Phys. Lett., 93, 102102 (2008).
[65] A.C. Schmitz, A.T. Ping, M .A. Khan, Semicond. Sci. Technol. 11, 1464 (1996).
[66] Q. Z. Liu, L. S. Yu, F. Deng, Appl. Phys. Lett. 71, 1658 (1997).
[67] D. Qiao, Z. F. Guan, J. Carlton, Appl. Phys. Lett. 74, 2652(1999).
[68] K. H. Kim, C. M. Jeon, S. H. Oh, J. Vac. Sci. Technol. B, 23 (2005).
[69] D. Selvanathan, F. M. Mohammed. A. Tesfayesus, J. Vac. Sci. Technol. B 22, 2409 (2004).
[70] A. Crespo, R. Fitch, J. Gillespie, in Proceedings of the 2003 International Conference on Compound Semiconductor Mfg. Technology, Technical Digest 13.1 (2003).
[71] C. M. Pelto, Y. A. Chang, Y. Chen, Sol. St. Electr. 45, 1597 (2001).
[72] F. Roccaforte, F. Iucolano, A. Alberti, Superlatt. Microstruc. 40, 373 (2006).
[73] F. Roccaforte, F. Iucolano, F. Giannazzo, Appl. Phys. Lett. 89, 022103 (2006).
[74] B. Jacobs, M. C. J. C. M. Kramer, E. J. Geluk, J. Cryst. Growth 241, 15 (2002).
[75] X. Kong, K. Wei, G. Liu and X. Liu, J. Phys. D: Appl. Phys. 45, 265101 (2012).
[76] M. W. Fay, G. Moldovan, P.D. Brown, J. Appl. Phys. 92, 94 (2002).
[77] V. Desmaris, J.Y. Shiu, C.Y. Lu, J. Appl. Phys. 100, 034904 (2006).
[78] F. Iucolano, G.Greco, F. Roccaforte, Appl. Phys. Lett. 103, 201604 (2013).
[79] L. Wang, D. H. Kim, and I. Adesida, Appl. Phys. Lett. 95, 172107 (2009).
[80] J. Bardeen, J. Appl. Phys. 11, 88 (1940).
[81] A. Fontsere, A. Perez-Tomas, M. Placidi, Appl. Phys. Lett. 99, 213504 (2011).
[82] A. N. Bright, P. J. Thomas, M. Weyland, J. Appl. Phys. 89, 3143 (2001).
[83] L. Wang, F. M. Mohammed, and I. Adesida, J. Appl. Phys. 103, 093516 (2008).
[84] L. Wang, F. M. Mohammed, and I. Adesida, J. Appl. Phys. 101, 013702 (2007).
[85] L. Wang, F. M. Mohammed, and I. Adesida, Appl. Phys. Lett. 87, 141915 (2005).
[86] G. Fisichella, G. Greco, F. Roccaforte, Appl. Phys. Lett. 105, 063117 (2014)
[87] G. Greco, F. Iucolano, C. Bongiorno, Applied Surface Science 314, 546 (2014).
[88] G. Greco, F. Iucolano, C. Bongiorno, Phys. Stat. Soli. A, 1–8 (2015).
[89] A. Constant, J. Baele, P. Coppens, J. Appl. Phys. 120, 104502 (2016).
[90] Y. L. Lan, H. C. Lin, H. H. Liu, Appl. Phys. Lett. 94, 243502 (2009)
[91] R. C. Fitch, J. K. Gillespie, N. Moser, Appl. Phys. Lett. 84, 1495 (2004)
[92] M. W. Fay, G. Moldovan, N.J. Weston, J. Appl. Phys. 96, 5588 (2004).
[93] Y. Y. Wong, Y. K. Chen, J. S. Maa, Appl. Phys. Lett. 103, 152104 (2013)
[94] D. N. Slapovskiy, A. Yu. Pavlov, V. Yu. Pavlov, Semiconductors 51, 438 (2017).
[95] G. Vanko, T. Lalinsky, Z. Mozolova, Vacuum 82, 193 (2008)
[96] B. P. Luther, J. M. Delucca, S. E. Mohney, Appl. Phys. Lett. 71, 3859 (1997).
[97] B. Zhang, W. Lin, S. Li, Y. Zheng, J. Appl. Phys. 111, 113710 (2012).
[98] N. A. Papanicolaou, A. Edwards, M. V. Rao, J. Appl. Phys. 87, 380 (2000).
[99] J. P. Ao, D. Kikuta, N. Kubota, IEEE Electron Device Lett. 24, 500 (2003).
[100] H. F. Sun, A. R. Alt, and C. R. Bolognesi, IEEE Electron Device Lett. 28, 350 (2007).
[101] Y. C. Lin, T. Y. Kuo, Y. L. Chuang, Appl. Phys. Express 5, 066503 (2012).
[102] C. J. Hang, C. Q. Wang, M. Mayer, Microelectron. Reliab. 48, 416 (2008).
[103] M. Schuette and W. Lu, J. Electron. Mater. 36, 420 (2007).
[104] W. Macherzynski, A. Stafiniak, B. Paszkiewicz, Phys. Stat. Soli. A 213, 1145 (2016).
[105] S. Heikman, S. Keller, Y. Wu, J. Appl. Phys. 93, 10114 (2003).
[106] A. Nakajima, P. Liu, M. Ogura, J. Appl. Phys. 115, 153707 (2014).
[107] M. Elsayed, R. Krause-Rehberg, O. Moutanabbir, B. Korff, W. Anwand, S Richter and C Hagendorf, New J. Appl. Phys. 13, 013029 (2011).
指導教授 陳一塵(I-Chen Chen) 審核日期 2020-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明