博碩士論文 107226074 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:32 、訪客IP:3.229.122.112
姓名 曾翰暐(Han-Wei Tseng)  查詢紙本館藏   畢業系所 光電科學與工程學系
論文名稱 光控膽固醇液晶及其非對稱光閥之應用
(Optically switchable cholesteric liquid crystals and their applications of asymmetrical light shutters)
相關論文
★ 利用電控動態手紋結構製作雙穩態散射型液晶光閥之研究★ 液晶摻雜十二氫氧基硬酯酸於鍍有聚乙烯基咔唑薄膜液晶盒中之多穩態特性及其應用
★ 利用偶氮苯摻雜膽固醇液晶製作光控線性偏振旋轉器★ 利用扭轉型聚合物網絡液晶製作 偏振選擇性光散射之研究
★ 中孔洞奈米粒子摻雜液晶之光電特性及其應用之研究★ 藍相液晶摻雜旋性聚合物之表面穩定效應之研究
★ 層列C型/層列C*型液晶摻雜偶氮苯材料之光電特性研究★ 離子性材料對向列型液晶自發性配向及其應用之研究
★ 膽固醇液晶摻雜離子性層列型液晶之動態散射特性研究★ 膽固醇液晶及扭轉向列型液晶之線性偏振旋轉器
★ 低操作電壓高分子分散型液晶及其應用之研究★ 單面及雙面旋性聚合物穩固藍相液晶之光電特性
★ 利用液晶相位空間光調制器實現波長及焦距可調之反射式Fresnel光學透鏡★ 光控及電控散射型/吸收型液晶光閥之研究
★ 利用雙扭轉向列型液晶製作可電光調控之線性偏振光液晶光圈★ 電控及光控膽固醇液晶光閥特性與結構之研究
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-7-1以後開放)
摘要(中) 論及近幾年顯示器種類,已不再是液晶顯示器獨大的情形,儘管如此,液晶的光學特性與其應用依舊有著不可忽視重要性,如波板、多穩態液晶、及藍相液晶等。尤其近年環保意識抬頭,節能產品不斷出現,液晶智慧窗戶也漸漸倍受重視。
  本論文中的研究分為兩部分,第一部分為光控偶氮苯膽固醇液晶,其是由負型液晶摻雜偶氮苯手性分子組成,偶氮苯手性分子會吸收特定波長的光,並使自身結構有順、反式的同分異構化反應,進而使膽固醇液晶之螺距改變,隨著螺距的變化便能將入射線偏振光的偏振方向旋轉一定角度,並研究其在各液晶盒厚度下之線偏振旋轉關係及其線偏振度(degree of linear polarization),並尋找能夠讓線偏振旋轉90°之液晶盒,再使用1D-DIMOS軟體驗證前述之實驗結果及解釋擬合下的結果,最後觀察其目視效果,依實驗結果推廣到多波長的偏振旋轉,運用實驗結果製作線性偏振旋轉器,並試著設計光閥以應用在液晶智慧窗戶上。
  第二部分是製作旋性相互抵消的膽固醇液晶,其由正型向列型液晶摻雜左旋偶氮苯手性分子及右旋手性分子製成,計算兩手性分子的螺旋力(chirality)配製一旋性相消之液晶混合物,又因偶氮苯材料的螺旋力可受光控,便可實現於液晶盒內有水平排列結構與膽固醇平面態兩種排列結構,並在偏光顯微鏡下分別觀察水平排列結構與膽固醇平面態,以及其施加各電場下之光學紋理,證明及解釋各狀態下的結構與排列,最後在前後穿透軸相互正交之偏振片下觀察與第一層液晶長軸夾0°與45°下之目視效果,並依實驗結果設計一液晶智慧窗戶之模型。
摘要(英) In recent years, different types of displays are launched in the market. Liquid crystal display (LCD) is not the only choice for customers. Nevertheless, the importance of optical properties and applications of LCs is unneglectable.     Especially, people pay attention to environmental awareness in recent decades. Energy-saving products, such as smart windows, have also been developing in the world.
  The research topics in this thesis include two sections. The first one is the optically switchable cholesteric LCs (CLCs), made by chiral azobenzene-doped negative nematic LCs. The photoisomerization between trans- and cis-isomers of the azobenzenes can change the pitch length of the CLCs. The variety of pitch length changes the polarization state of linearly polarized lights (LPLs), so CLCs can rotate the direction of the input LPLs by the illumination of light. To reach the target of 90° of the rotation angles of linear polarization, we focused on the rotation angle of linear polarization and the degree of linear polarization by the CLCs with different cell gaps. The experimental results can be theoretically analyzed by the 1D-DIMOS software. Finally, the optically switchable CLCs set between two cross-polarizers can be applied to an asymmetrical light shutter.
  The second section of the thesis is the study of optically switchable CLCs, made by left-handed chiral azobenzene and right-handed chiral dopant-doped positive nematic LCs. Due to the photoisomerization of the left-handed chiral azobenzene, the helical twisting power (HTP) can be decreased by shinning with UV light to photoisomerize the trans-isomers to cis-isomers. Moreover, the effective HTP of the chiral dopants with opposite chiralities can be canceled out with the proper selection of their concentrations, so that the CLCs can be switched to homogeneous alignment textures. On the other hand, the initial homogeneous alignment textures can be switched to planar textures of CLCs by the illumination of UV light to increase the chirality. Here, studies of the two different arrangement structures of LCs, the corresponding T-V curves, and their structures applied with various electric fields observed under a polarization optical microscope will be given. Finally, the view through the optically switchable CLCs between cross-polarizers with β angles of 0° and 45° will also be demonstrated to achieve an asymmetrical smart window.
關鍵字(中) ★ 液晶
★ 偶氮苯手性分子
★ 智慧窗戶
★ 線偏振旋轉
關鍵字(英)
論文目次 摘要 i
Abstract ii
誌謝 iv
目錄 v
圖目錄 viii
表目錄 xiii
符號說明 xiv
第一章 緒論 1
§1-1 前言 1
§1-2 研究動機 1
§1-3 論文架構 2
第二章 液晶簡介 3
§2-1 液晶的定義 3
§2-1-1 液晶的起源[4] 3
§2-1-2 物質分類 4
§2-2 液晶分類 5
§2-2-1 向列型液晶(Nematics) 6
§2-2-2 層列型液晶(Smectics)[11] 7
§2-2-3 膽固醇型液晶(Cholesterics,簡稱為N*) 9
§2-3 液晶物理特性 11
§2-3-1 光學異向性(Optical anisotropy)[13] 11
§2-3-2 介電異向性(Dielectric anisotropy)[14] 15
§2-3-3 連續彈性體理論(Continuum theory)[4] 16
§2-3-4 溫度對向列型液晶的影響[15] 17
§2-3-5 Fréedericksz transition[4] 18
第三章 實驗理論 19
§3-1 膽固醇液晶理論 19
§3-1-1 膽固醇液晶主要排列結構 19
§3-1-2 膽固醇液晶排列結構與外加電場的關係[18] 21
§3-1-3 影響膽固醇液晶的其他外在因素 23
§3-1-4 膽固醇液晶的光學特性 25
§3-2 偶氮苯材料(Azobenzene materials)介紹 26
§3-2-1 偶氮苯手性分子(Chiral azobenzene)[20] 26
§3-2-2 光引致同分異構化與其影響 27
§3-3 矩陣模擬運算 27
§3-3-1 22瓊斯矩陣(22 Jones matrix)[13] 28
§3-3-2 44貝里曼矩陣(44 Berreman matrix)[21][22] 30
§3-4 光的偏振 32
§3-4-1 線偏振度(Degree of linear polarization, DoLP) 32
§3-4-2 線偏振旋轉(Linear polarization rotation) 33
§3-5 Williams domain[24] 34
第四章 實驗方法與製程 36
§4-1 材料介紹 36
§4-1-1 正型向列型液晶--E7 36
§4-1-2 負型向列型液晶--HNG30400-200 37
§4-1-3 左旋偶氮苯手性分子-- ChAD-3C-S 37
§4-1-4 右旋手性分子--CB15 39
§4-1-5 水平配向材料聚乙烯醇--(PVA) 39
§4-2 液晶盒製作 39
§4-2-1 材料備製 40
§4-2-2 ITO基板裁切及清洗過程 40
§4-2-3 基板表面之水平配向處理 41
§4-2-4 液晶盒製作過程 41
§4-2-5 液晶空盒厚度量測 42
§4-3 液晶樣品觀測與實驗架設 44
§4-3-1 液晶樣品觀測 44
§4-3-2 實驗架設與實驗方法 45
第五章 實驗結果與討論 48
§5-1 光控偶氮苯膽固醇液晶光閥之研究 48
§5-1-1 偶氮苯膽固醇液晶照射紫外光之線偏振旋轉 48
§5-1-2 順式偶氮苯手性分子暗回復過程之討論 50
§5-1-3 偶氮苯膽固醇液晶厚度與出射光偏振旋轉角度的關係 51
§5-1-4 1D-DIMOS軟體模擬偏振旋轉角度與實驗結果之擬合 54
§5-1-5 紫外光強度對偶氮苯膽固醇液晶之影響 60
§5-1-6 線偏振旋轉器目視效果 61
§5-2 旋性相消之偶氮苯膽固醇液晶特性研究及其應用 65
§5-2-1 旋性相消之偶氮苯膽固醇液晶特性研究 65
§5-2-2 旋性相消之偶氮苯膽固醇液晶於電場下之研究 68
§5-2-3 旋性相消之偶氮苯膽固醇液晶目視效果及其應用 72
第六章 結論與未來展望 76
§6-1 結論 76
§6-1-1 光控偶氮苯膽固醇液晶光閥之研究 76
§6-1-2 光控偶氮苯膽固醇液晶光閥之研究 77
§6-2 未來展望 77
參考文獻 80
參考文獻 [1] P. S. Drzaic, “Polymer dispersed nematic liquid crystal for large area displays and light valves,” Appl. Phys. Lett. 60, 2142-2148 (1986).
[2] C.-K. Liu, C.-Y. Tu, Y.-X. Liu, W.-H. Chen, and K.-T. Cheng, “General theory of asymmetrical polarization-dependent optics in functional material-doped 90° twisted nematic liquid crystals,” Opt. Express 26, 17115-17131 (2018).
[3] 蔡閔程,膽固醇液晶及扭轉型液晶之線性偏振旋轉器,碩士論文,(民國105年)
[4] D. Demus, J. Goodby, G. W. Gray, H.-W. Spiess, and V. Vill, “Physical Properties of Liquid Crystals,” ed., WILEY‐VCH Verlag GmbH, New York (1999).
[5] T. J. Sluckin and D. A. Dunmur, “Soap, Science, and Flat-Screen Tvs: A History of Liquid Crystals,” Oxford Univ Pr (2011).
[6] O. Lehmann, “Über fliessende Krystalle,” Z. Phys. Chem. 4, 462 (1889).
[7] D. C. Giancoli, “Physics for scientists & engineers,” 4th ed., Pearson Education, Inc. (2008).
[8] A. Anders and J. L. Slack, “Phase Transitions in Vacuum Arcs in the Context of Liquid Metal Arc Sources,” 25th ISDEIV. 305-308 (2012).
[9] D. K. Yang and S. T. Wu, “Fundamentals of Liquid Crystal Devices,” John Wiley & Sons, Ltd. (2015).
[10] P. J. Collings and M. Hird, “Introduction to Liquid Crystals: Chemistry and Physics,” CRC Press, London (1997).
[11] S. J. Elston and N. J. Mottram, “Order parameter variation in smetic liquid crystals,” Adv. Chem. Phys. 113, 317-339 (2007).
[12] H. Kitzerow, C. Bahr, and S. Chandrasekhar, “Chirality in Liquid Crystals,” Springer (2001).
[13] A. Yariv and P. Yeh, “Optical Waves in Crystals,” John Wiley & Sons, Inc., New York (1983).
[14] L. M. Blinov and V. G. Chigrinov, “Electrooptic Effects in Liquid Crystal Materials,” Springer, New York (1994).
[15] P. G. de. Gennes and J. Prost, “The Physics of Liquid Crystal,” 2nd ed., Oxford University Press, New York (1993).
[16] 楊有承,雙頻橫向螺旋膽固醇液晶之光電特性及其應用,碩士論文,(民國102年)
[17] G. Carbone, D. Corbett, S. J. Elston, and P. Raynes, “Uniform Lying Helix Alignment on Periodic Surface Relief Structure Generated via Laser Scanning Lithography,” Mol. Cryst. Liq. Cryst. 544, 37-49 (2011).
[18] S. V. Pasechnik, V. G. Chigrinov, and D. V. Shmeliova, “Liquid Crystals: Viscous and Elastic Properties in Theory and Applications,” WILEY-VCH Verlag GmbH & Co. KGaA, Weinheim (2009).
[19] L. M. Blinov and V. G. Chigrinov, “Electrooptic Effects in Liquid Crystal Materials,” Springer, New York (1994).
[20] Y.-C. Liu, K.-T. Cheng, H.-F. Chen and A. Y.-G. Fuh, “Photo and electro isomerization of azobenzenes based on polymer dispersed liquid crystals doped with azobenzenes and their applications,” Opt. Express 22, 4404 (2014).
[21] 丁啟倫,運用二維時域有限差分法分析液晶元件光學性質(國立成功大學,碩士論文,(民國94年)
[22] D. W. Berreman, “Optics in Stratified and Anisotropic Media: 4 X 4-Matrix Formulation,” J. Opt. Soc. Am. 6, 502-510 (1972).
[23] E. M. Amin, N. Karmakar, and B. Winther-Jensen, “Polyvinyl-alcohol (pva)-based RF Humidity Sensor in Microwave Frequency,” Electromagn Waves (Camb) 54, 149-166 (2013).
[24] W. Helfrich, “Conduction-Induced Alignment of Nematic Liquid Crystals: Basic Model and Stability Considerations,” J. Chem. Phys. 51, 4092-4105 (1972).
[25] H. Gruler, “Williams Domains and Dielectric Alignment in a Nematic Liquid Crystal,” Mol. Cryst. Liq. Cryst. 27, 31-41 (1974).
[26] N. Éber, P. Salamon, and Á. Buka, “Electrically induced patterns in nematics and how to avoid them,” Liq. Cryst. Rev. 4, 101-134 (2016).
[27] M. S. Zakerhamidia, S. Shoarinejadb, and S. Mohammadpour, “Fe3O4 nanoparticle effect on dielectric and ordering behavior of nematic liquid crystal host,” J. Mol. Liq. 191, 16-19 (2014).
[28] J.-C. Lai, W.-F. Cheng, C.-K. Liu, and K.-T. Cheng, “Optically switchable bistable guest–host displays in chiral-azobenzene- and dichroic-dye-doped cholesteric liquid crystals,” Dyes Pigm. 163, 641-646 (2019).
[29] Q. Li, L. Green, N. Venkataraman, I. Shiyanovskaya, A. Khan, and J. W. Doane, “Reversible Photoswitchable Axially Chiral Dopants with High Helical Twisting Power,” J. Am. Chem. Soc. 129, 12908-12909 (2007).
[30] K.-T. Cheng, P.-Y. Lee, M. M. Qasim, C.-K. Liu, W.-F. Cheng, and T. D. Wilkinson, “Electrically Switchable and Permanently Stable Light Scattering Modes by Dynamic Fingerprint Chiral Textures,” ACS Appl. Mater. Interfaces. 8, 10483-10493 (2016).
[31] E. M. Amin, N. Karmakar, and B. Winther-Jensen, “Polyvinyl-alcohol (pva)-based RF Humidity Sensor in Microwave Frequency,” Electromagn Waves (Camb) 54, 149-166 (2013).
[32] Y. Cui, R. S. Zola, Y.-H. Yang, and D.-K. Yang, “Alignment layers with variable anchoring strengths from Polyvinyl Alcohol,” J. Appl. Phys. 111, 063520 (2012).
[33] C.-K. Liu, C.-Y. Chiu, S. M. Morris, M.-C. Tsai, C.-C. Chen, and K.-T. Cheng, “Optically controllable linear-polarization rotator using chiral-azobenzene-doped liquid crystals,” Materials 10, 1299 (2017).
[34] C.-L. Yuan, W. Huang, Z.-G. Zheng, B. Liu, H. K. Bisoyi, Y. Li, D. Shen, Y. Lu, and Q. Li, “Stimulated transformation of soft helix among helicoidal, heliconical, and their inverse helices,” Sci. Adv. 5, eaax9501 (2019).
[35] C.-K. Liu, M.-C. Tsai, S. M. Morris, C.-Y. Chiu, C.-C. Chen, and K.-T. Cheng, “Dynamics of pitch change in chiral azobenzene-doped liquid crystals,” J. Mol. Liq. 263, 406-412 (2018).
指導教授 鄭恪亭(Ko-Ting Cheng) 審核日期 2020-8-20
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明