博碩士論文 107329601 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:28 、訪客IP:3.145.204.140
姓名 黃黨同南(Hoang Dang Tung Nam)  查詢紙本館藏   畢業系所 材料科學與工程研究所
論文名稱 三元素摻雜LLTO混LLZO應用鋰離子電池
(The tri-doping LLTO mixed with LLZO for lithium battery electrolyte)
相關論文
★ 鋅空氣電池之電解質開發★ 添加石墨烯助導劑對活性碳超高電容電極性質的影響
★ 耐高壓離子液體電解質★ 熱裂解法製備RuO2-Ta2O5/Ti電極 應用於離子液體電解液
★ 碳系超級電容器用耐高壓電解液研發★ 離子液體與碸類溶劑混合型電解液應用於鋰離子電池矽負極材料
★ 以濕蝕刻法於可撓性聚亞醯胺基板製作微通孔之研究★ 以二氧化釩奈米粒子調變矽化鎂熱電材料之性能
★ 可充電式鋁電池的 4-ethylpyridine–AlCl3電解液、規則中孔碳正極材料以及自放電特性研究★ 釹摻雜鑭鍶鈷鐵奈米纖維應用於質子傳輸型陶瓷電化學電池空氣電極
★ 於丁二腈電解質添加碳酸乙烯酯對鋰離子電池性能之影響★ 多孔鎳集電層應用於三維微型固態超級電容器
★ 二氧化錳/銀修飾奈米碳纖維應用於超級電容器★ 氧化鎳-鑭鍶鈷鐵奈米纖維陰極電極應用於質子傳導型固態氧化物電化學電池
★ 應用丁二腈基離子導體修飾PVDF-HFP 複合聚合物電解質與鋰電極界面之高穩定鋰離子電池★ 鑭鍶鈷鐵奈米纖維/銀顆粒複合陰極應用於質子傳輸型陶瓷電化學電池
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 ( 永不開放)
摘要(中) 鋰離子電池(LIB)是電動汽車(EV)電源和可再生能源存儲系統的潛在候選者之一。但是,鋰枝晶的形成阻礙了鋰離子電池(LIB)的有機液體電解質的開發,由於易燃材料的性質,鋰枝晶的形成會引起短路和爆炸。此外,液體有機電解質的有限的電化學窗口也挑戰了裝置升級的可行性。因此,應用鈣鈦礦材料LLTO的全固態電池被認為是下一代鋰離子電池的解決方案。
摘要(英) Lithium ion battery (LIB) is one of the potential candidates for electric vehicles (EVs) power source and renewable energy storage system. However, the development of organic liquid electrolyte for lithium ion batteries (LIBs) has been obstructed by lithium dendrite formation, which can cause short circuit and explosion due to the nature of inflammable material. Furthermore, the limited electrochemical window of the liquid organic electrolytes also challenge the feasibility of device upgrade. Therefore, all-solid-state-battery with the application of perovskite material LLTO is considered to be a solution for the next-generation lithium ion battery.
關鍵字(中) ★ 鋰離子電池
★ LLTO
★ LLZO
★ 固態電解質
關鍵字(英) ★ Lithium ion battery
★ LLTO
★ LLZO
★ solid state electrolyte
論文目次 摘要 i
Abstract i
Acknowledgement ii
Table of Contents iii
List of figures v
List of tables vii
Chapter 1 1
Introduction 1
1.1. Crystal structure of the lithium lanthanum titanate 3
1.2. Mechanism of ion diffusion in LLTO crystal structure 4
1.3. Grain boundary conductivity 6
1.4. Lithium secondary battery 9
Chapter 2 11
Experiment 11
2.1. Preparing precursors 11
2.1.1. Preparing LLTO precursor powder 11
2.1.2. Synthesize Al-doped LLZO powder 12
2.1.3. Fabrication of the solid-state electrolyte 13
2.1.4. Preparation of cathode 14
2.1.5. Battery assembly 15
2.2. Experimental equipment 17
2.2.1. Ball-milling machine 17
2.2.2. High-temperature sintering oven 18
2.2.3. X-ray diffraction 18
2.2.4. Scanning electron microscopy (SEM) 19
2.2.5. Electrochemical impedance spectroscopy (EIS) 19
2.2.6. Battery charge/discharge test 20
Chapter 3 22
Result and Discussion 22
3.1. X-ray diffraction analysis 22
3.2. Raman spectroscopy 28
3.3. Scanning Electron Microscopy (SEM) 29
3.4. EDS analysis 33
3.5. EIS analysis 34
3.6. Battery charge/discharge test 36
3.6.1. Pseudo solid-state battery 36
3.6.2. LVP/trivalent doping LLTO mix 10 wt% LLZO pellet/LVP all solid-state battery charge/discharge 37
Conclusion 41
Reference 42
參考文獻 [1] Yuandong Sun, Peiyuan Guan, Yunjian Liu, Haolan Xu, Sean Li & Dewei Chu, Recent progress in Lithium Lanthanum Titanate Electrolyte towards All Solid-State Lithium Ion Secondary Battery, Critical Reviews in Solid State and Materials Sciences, pp. 1-18 (2018)
[2] Yishou Zhu, Xingfeng He, and Yifei Mo, Origin of Outstanding Stability in the Lithium Solid Electrolyte Materials: Insights from thermodynamic Analyses Based on First-Principles Calculations, ACS Applied Materials & Interfaces 7, pp. 23685-23693 (2015)
[3] Noriaki Kamaya, Kenji Homma, Yuichiro Yamakawa, Masaaki Hirayama, Ryoji Kanno, Masao Yonemura, Takashi Kamiyama, Yuki Kato, Shigenori Hama, Koji Kawamoto and Akio Mitsui, A lithium superionic conductor, Nature Materials VOL 10, pp. 682-686 (2011)
[4] Joykumar S. Thokchom, Notan Gupta, and Binod Kumar, Superionic Conductivity in a Lithium Aluminum Germanium Phosphate Glass-Ceramic, Journal of The Electrochemical Society, 155 (12) A915-A920 (2008)
[5] Jie Fu, Superionic conductivity of glass-ceramics in the system Li2O-Al2O3-TiO2-P2O5, Solid State Ionics 96 (1997) 195-200
[6] Chunwen Sun, Jin Liu, Yudong Gong, David P. Wilkinson, Jiujun Zhang, Recent advances in all-solid-state rechargeable lithium batteries, Nano Energy 33, 363-386 (2017)
[7] Ao Mei, Xiao-Liang Wang, Jin-Le Lan, Yu-Chuan Feng, Hong-Xia Geng, Yuan-Hua Lin, Ce-Wen Nan, Role of amorphous boundary layer in enhancing ionic conductivity of lithium-lanthanum-titanate electrolyte, Electrochimica Acta 55, 2958-2963 (2010)
[8] Y. Inaguma, J. Yu, Y. Shan, M. Itoh, and T. Nakamuraa, The effect of the hydrostatic pressure on the ionic conductivity in a perovskite lanthanum lithium titanate, J. Electrochem. Soc. 142, L8 (1995)
[9] Y. J. Shan, L. Chen, Y. Inaguma, M. Itoh, and T. Nakamura, Oxide cathode with perovskite structure for rechargeable lithium batteries. J. Power Sources 54, 397 (1995)
[10] A. Boulant, J. Emery, A. Jouanneaux, J.-Y. Buzaré, and J.-F. Bardeau, From micro- to nanostructured fast ionic conductor Li0.30La0.56□0.13TiO3: size effects on NMR properties, J. Phys. Chem. C. 115, 15575 (2011)
[11] Y. Harada, T. Ishigaki, H. Kawai, and J. Kuwano, Lithium ion conductivity of polycrystalline perovskite La0.672xLi3xTiO3 with ordered and disordered arrangements of the A-site ions, Solid State Ionics 108, 407 (1998)
[12] A. Morata-Orrantia, S. García-Martín, and M. Á. Alario-Franco, Optimization of lithium conductivity in La/Li titanates. Chem. Mater. 15(21, 3991 (2003)
[13] T. Okumura, T. Ina, Y. Orikasa, H. Arai, Y. Uchimotoa, and Z. Ogumi, Improvement of lithium ion conductivity for A-site disordered lithium lanthanum titanate perovskite oxides by fluoride ion substitution, J. Mater. Chem. 21, 10061 (2011)
[14] T. Teranishi, M. Yamamoto, H. Hayashi, and A. Kishimoto, Lithium ion conductivity of Nd-doped (Li, La)TiO3 ceramics, Solid State Ionics 243, 18 (2013)
[15] Juchuan Li, Cheng Ma, Miaofang Chi, Chengdu Liang, and Nancy J. Dudney, Solid Electrolyte: the Key for High-Voltage Lithium Batteries, Adv. Energy Mater. 2015, 5, 1401408
[16] C. Ma, K. Chen, C. Liang, C.-W. Nan, R. Ishikawa, K. Morea, and M. Chi, Atomic-scale origin of the large grain-boundary resistance in perovskite Li-ion-conducting solid electrolytes, Energy Environ. Sci. 7, 1638 (2014)
[17] Qian Wang, Jinhua Zhang, Xiaoning He, Guoqin Cao, Junhua Hu, Jimin Pan, Guosheng Shao, Synergistic effect of cation ordered structure and grain boundary engineering on long-term cycling of Li0.35La0.55TiO3-based solid electrolytes, Journal of the European Ceramic Society 39, 3332-3337 (2019)
[18] Kun Yu, Rui Gu, Lingfeng Wu, Hongchen Sun, Ruiping Ma, Li Jin, Youlong Xu, Zhuo Xu, Xiaoyong Wei, Ionic and electronic conductivity of solid electrolyte Li0.5La0.5TiO3 doped with LiO2-SiO2-B2O3 glass, Journal of Alloys and Compounds 739, 892-896 (2018)
[19] Ruixia Li, Kaiming Liao, Wei Zhou, Xu Li, Dongmei Meng, Rui Cai, Zongping Shao, Realizing fourfold enhancement in conductivity of perovskite Li0.33La0.557TiO3 electrolyte membrane via a Sr and Ta co-doping strategy, Journal of Membrane Science 582, 194-202 (2019)
[20] Woo Ju Kwon, Hyeongil Kim, Kyu-Nam Jung, Woosuk Cho, Sung Hyun Kim, Jong-Won Lee and Min-Sik Park, Enhanced Li+ conduction in perovskite Li3xLa2/3-x□1/3-2xTiO3 solid-electrolytes via microstructural engineering, J. Mater. Chem A 5, 6257 (2017)
[21] BU-204: How do Lithium Batteries Work? 2018-06-01 https://batteryuniversity.com/learn/article/lithium_based_batteries
[22] Ruihuan Qin, Yaqing Wei, Tianyou Zhai, and Huiqiao Li, LISICON structured Li3V2(PO4)3 with high rate and ultralong life for low-temperature lithium-ion battery, J. Mater. Chem. A, 2018, 6, 9737-9746
[23] Tao Jiang, Chunzhong Wang, Gang Chen, Hong Chen, Yingjin Wei, Xu Li, Effects of synthetic route on the structural, physical and electrochemical properties of Li3V2(PO4)3 cathode materials, Solid State Ionics 180 (2009) 708-714
[24] Xiaogang Han, Yunhui Gong, Kun (Kelvin) Fu, Xingfeng He, Gregory T. Hitz, Jiaqi Dai, Alex Pearse, Boyang Liu, Howard Wang, Gary Rubloff, Yifei Mo, Venkataraman Thangadurai, Eric D. Wachsman and Liangbing Hu, Negating interfacial impedance in garnet-based solid-state Li metal batteries, Nature materials VOL 16, May 2017
[25] D. Linden and T.B. Reddy – Handbook of batteries 3rd Ed. Chap. 3. ISBN: 0-07-135978-8 McGrow Hill 2002
[26] Andrea Paolella, Wen Zhu, Giovanni Bertoni, Sylvio Savoie, Zimin Feng, Hendrix Demers, Vincent Gariepy, Gabriel Girard, Etienne Rivard, Nicolas Delaporte, Abdelbast Guerfi, Henning Lorrmann, Chandramohan George, and Karim Zaghib, Discovering the Influence of Lithium Loss on Garnet Li7La3Zr2O12 Electrolyte Phase Stability, ACS Appl. Energy Mater. 2020, 3, 3415-3424
[27] Kai Chen, Mian Huang, Yang Shen, Yuanhua Lin, C.W. Nan, Enhancing ionic conductivity of Li0.35La0.55TiO3 ceramics by introducing Li7La3Zr2O12, Electrochimica Acta 80 (2012) 133-139
[28] Kai Chen, Mian Huang, Yang Shen, Yuanhua Lin, C.W. Nan, Improving ionic conductivity of Li0.35La0.55TiO3 ceramics by introducing Li7La3Zr2O12 sol into the precursor powder, Solid State Ionics 235 (2013), 8-13
[29] G. Larraz, A. Orera and M. L. Sanjuan, Cubic phases of garnet-type Li7La3Zr2O12: the role of hydration, J. Mater. Chem. A, 2013, 1, 11419-11428
[30] Randall M. German, Powder Metallurgy Science, March 1, 1994
[31] Yuki Nomura, Kazuo Yamamoto, Mikiya Fujii, Tsukasa Hirayama, Emiko Igaki & Koh Saitoh, Dynamic imaging of lithium in solid-state batteries by operando electron energy-loss spectroscopy with sparse coding, Nat Commun 11, 2824 (2020).
指導教授 李勝偉(Sheng-Wei Lee) 審核日期 2020-8-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明