博碩士論文 108222030 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:137 、訪客IP:18.118.227.69
姓名 朱凱翊(KAI-I CHU)  查詢紙本館藏   畢業系所 物理學系
論文名稱 單一超導量子位元控制與狀態讀取
(Control and Readout of Single Superconducting Qubit)
相關論文
★ 單電子偵測器原理及製作與二維電子氣量子點電荷傳輸行為★ 單電子系統中的電子穿隧事件
★ 石墨烯與超導金屬介面的電子穿隧行為★ 實驗觀測混合式單電子箱中之共同穿隧事件
★ 石墨烯/超導體/石墨烯元件之古柏電子對分裂現象探討★ 雙局部閘極石墨烯/超導體/石墨烯元件中古柏電子對分離現象觀測
★ 不連續鉛顆粒/單層二硫化鉬系統之超導鄰近效應觀測★ 二維電子氣體中量子點接觸 與量子點製作及量測
★ 二硫化鉬及二硫化鎢電晶體的 低頻雜訊行為★ 超導量子干涉元件製作
★ 工程化超導電路上三維腔量子電動力學系統★ Characterizing single-qubit gate fidelity on superconducting qubits
★ Virtual Potentials in Electric Circuit and Motion of Brownian Gyrator★ 超導雙量子位元電路的實現
★ Developing Flux-Driven Josephson Parametric Amplifer★ 全電子束微影製程的共平面波導與超導量子位元耦合系統
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 電路量子電動力學 (circuit quantum electrodynamics) 是一個學習光跟原子量子交互作用的平台,同時,也是實現可擴展的量子電腦最有潛力的方法之一。單一Transmon 量子位元耦合一一維傳輸線共振器在我們實驗室裡被製造出來。我們控制並量測量子位元的狀態藉由色散讀取 (dispersive readout) 跟傑恩斯-卡明斯讀取 (Jaynes-Cummings readout)。從頻譜量測結果,確認我們的電路量子電動力學系統是在強耦
合以及強色散區域,此時量子相干性可維持。我們演示數項指標性的時域控制實驗,如拉比震盪 (Rabi oscillation), 狀態掃描 (state tomography) 以及拉姆齊條紋 (RamseyFringe)。基本的量子位元特徵如鬆弛時間 T1,量子退相干時間 T2 以及耦合強度 g 也可確定, 分別是 T1 ∼ 75 ns,T2 ∼ 134 ns,g ∼ 175 MHz。這篇論文提供了超導電路的基本理論背景以控制跟讀取量子位元狀態。
摘要(英) Circuit quantum electrodynamics (cQED) is a platform to study quantum interaction between light and atom. Also, it is one of the most promising ways to achieve scalable quantum computer. A transmon qubit coupled to a one dimensional transmission line resonator is fabricated in our Lab. We control and measure the qubit state by utilizing the dispersive readout and Jaynes-Cummings readout. From spectroscopy measurements, our cQED system is confirmed in the strong dispersive regime where the quantum coherence effect dominates the system. We demonstrate some hallmark time domain control experiments, such as Rabi oscillation, state tomography, and Ramsey Fringe. The basic
characteristic of the qubit, such as relaxation time T1 ∼ 75 ns, decoherence time T2 ∼ 134 ns, and coupling strength g ∼ 175 MHz are then determined. This thesis provides the
basic theoretical backgrounds of superconducting circuits and the studies of control and readout of the single qubit.
關鍵字(中) ★ 電路量子電動力學
★ Transmon 量子位元
★ 一維傳輸線共振器
★ 色散讀取
★ 傑恩 斯-卡明斯讀取
★ 拉比震盪
★ 狀態掃描
★ 拉姆齊條紋
★ 鬆弛時間
★ 量子退相干時間
關鍵字(英) ★ Circuit quantum electrodynamics
★ Transmon qubit
★ one dimensional transmission line resonator
★ dispersive readout
★ Jaynes-Cummings readout
★ Rabi oscillation
★ state tomography
★ Ramsey Fringe
★ relaxation time
★ decoherence time
論文目次 page
摘要 ix
Abstract xi
Contents xiii

1 Introduction 1

2 Circuit QED 3
2.1 Quantum LC circuit .......................................................... 3
2.2 Charge Qubit.................................................................. 4
2.2.1 Josephson junction .................................................... 5
2.2.2 Cooper pair box ....................................................... 7
2.2.3 Transmon .............................................................. 8
2.3 Jaynes-Cummings Model ..................................................... 10
2.3.1 Drive ................................................................... 12
2.3.2 Bloch sphere ........................................................... 13
2.3.3 Qubit state control .................................................... 14
2.3.4 Dispersive regime ...................................................... 15
2.4 Qubit state readout ........................................................... 16
2.4.1 Dispersive readout ..................................................... 16
2.4.2 Jaynes-Cummings readout ............................................ 19

3 Experimental Design and Setup 25
3.1 Superconducting Qubit design and fabrication............................... 25
3.2 Measurement wiring........................................................... 26
3.3 Measurement instruments..................................................... 27
3.4 IQ demodulation .............................................................. 29

4 Spectroscopy measurement 31
4.1 One tone spectroscopy ........................................................ 31
4.2 Two tone spectroscopy ........................................................ 33
4.2.1 Dispersive readout spectroscopy....................................... 35
4.2.2 Jaynes-Cummings readout spectroscopy .............................. 37

5 Single Qubit gate 41
5.1 Rabi ........................................................................... 42
5.2 T1 relaxation .................................................................. 46
5.3 State tomography ............................................................. 46
5.4 Bloch vector component ...................................................... 48
5.5 Ramsey Fringe ................................................................ 49
5.6 Spin echo ...................................................................... 51

6 Conclusion and Prospects 53

Bibliography 55
參考文獻 [1] S. J. Van Enk, H. J. Kimble, and H. Mabuchi, “Quantum information processing in cavity-
QED,” in Experimental Aspects of Quantum Computing, Springer US, 2005, pp. 75–90,
isbn: 0387230459. doi: 10.1007/0-387-27732-3_6. arXiv: 0510152 [quant-ph].
[2] L. S. Bishop, “Circuit Quantum Electrodynamics,” Jul. 2010. arXiv: 1007.3520. [Online].
Available: http://arxiv.org/abs/1007.3520.
[3] M. Reed, “Entanglement and Quantum Error Correction with Superconducting Qubits,”
Nov. 2013. arXiv: 1311.6759. [Online]. Available: http://arxiv.org/abs/1311.6759.
[4] D. I. Schuster, “Circuit Quantum Electrodynamics,” Tech. Rep., 2007.
[5] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, R. .-S. Huang, J. Majer, S. Kumar, S. M.
Girvin, and R. J. Schoelkopf, “Circuit Quantum Electrodynamics: Coherent Coupling of
a Single Photon to a Cooper Pair Box,” Nature, vol. 431, no. 7005, pp. 162–167, Jul. 2004.
doi: 10.1038/nature02851. arXiv: 0407325 [cond-mat]. [Online]. Available: http:
//arxiv.org/abs/cond-mat/0407325%20http://dx.doi.org/10.1038/nature02851.
[6] J. Koch, T. M. Yu, J. Gambetta, A. A. Houck, D. I. Schuster, J. Majer, A. Blais, M. H.
Devoret, S. M. Girvin, and R. J. Schoelkopf, “Charge insensitive qubit design derived
from the Cooper pair box,” Physical Review A - Atomic, Molecular, and Optical Physics,
vol. 76, no. 4, Feb. 2007. doi: 10.1103/PhysRevA.76.042319. arXiv: 0703002 [cond-
mat]. [Online]. Available: http://arxiv.org/abs/cond-mat/0703002%20http://dx.
doi.org/10.1103/PhysRevA.76.042319.
[7] J. M. Fink, M. Goeppl, M. Baur, R. Bianchetti, P. J. Leek, A. Blais, and A. Wallraff,
“Climbing the Jaynes-Cummings Ladder and Observing its Sqrt(n) Nonlinearity in a Cav-
ity QED System,” Nature, vol. 454, no. 7202, pp. 315–318, Feb. 2009. doi: 10.1038/
nature07112. arXiv: 0902.1827. [Online]. Available: http://arxiv.org/abs/0902.
1827%20http://dx.doi.org/10.1038/nature07112.
[8] A. Blais, J. Gambetta, A. Wallraff, D. I. Schuster, S. M. Girvin, M. H. Devoret, and R. J.
Schoelkopf, “Quantum information processing with circuit quantum electrodynamics,”
Physical Review A - Atomic, Molecular, and Optical Physics, vol. 75, no. 3, Dec. 2006.
doi: 10.1103/PhysRevA.75.032329. arXiv: 0612038 [cond-mat]. [Online]. Available:
http://arxiv.org/abs/cond-mat/0612038%20http://dx.doi.org/10.1103/
PhysRevA.75.032329.
[9] X. Gu, A. F. Kockum, A. Miranowicz, Y.-x. Liu, and F. Nori, “Microwave photonics
with superconducting quantum circuits,” Physics Reports, vol. 718-719, pp. 1–102, Jul.
2017. doi: 10.1016/j.physrep.2017.10.002. arXiv: 1707.02046. [Online]. Available:
http://arxiv.org/abs/1707.02046%20http://dx.doi.org/10.1016/j.physrep.
2017.10.002.
[10] P. Krantz, M. Kjaergaard, F. Yan, T. P. Orlando, S. Gustavsson, and W. D. Oliver, “A
Quantum Engineer’s Guide to Superconducting Qubits,” Applied Physics Reviews, vol. 6,
no. 2, Apr. 2019. doi: 10.1063/1.5089550. arXiv: 1904.06560. [Online]. Available:
http://arxiv.org/abs/1904.06560%20http://dx.doi.org/10.1063/1.5089550.
[11] A. Wallraff, D. I. Schuster, A. Blais, L. Frunzio, J. Majer, S. M. Girvin, and R. J.
Schoelkopf, “Approaching Unit Visibility for Control of a Superconducting Qubit with
Dispersive Readout,” Physical Review Letters, vol. 95, no. 6, Feb. 2005. doi: 10.1103/
PhysRevLett.95.060501. arXiv: 0502645 [cond-mat]. [Online]. Available: http://
arxiv.org/abs/cond-mat/0502645%20http://dx.doi.org/10.1103/PhysRevLett.95.
060501.
[12] D. I. Schuster, A. A. Houck, J. A. Schreier, A. Wallraff, J. M. Gambetta, A. Blais, L.
Frunzio, B. Johnson, M. H. Devoret, S. M. Girvin, and R. J. Schoelkopf, “Resolving photon
number states in a superconducting circuit,” Nature, vol. 445, no. 7127, pp. 515–518, Aug.
2006. doi: 10.1038/nature05461. arXiv: 0608693[cond-mat]. [Online]. Available: http:
//arxiv.org/abs/cond-mat/0608693%20http://dx.doi.org/10.1038/nature05461.
[13] D. I. Schuster, A. Wallraff, A. Blais, L. Frunzio, R. .-S. Huang, J. Majer, S. M. Girvin, and
R. J. Schoelkopf, “AC-Stark Shift and Dephasing of a Superconducting Qubit Strongly
Coupled to a Cavity Field,” Physical Review Letters, vol. 94, no. 12, Aug. 2004. doi:
10.1103/PhysRevLett.94.123602. arXiv: 0408367 [cond-mat]. [Online]. Available:
http://arxiv.org/abs/cond-mat/0408367%20http://dx.doi.org/10.1103/
PhysRevLett.94.123602.
[14] L. S. Bishop, E. Ginossar, and S. M. Girvin, “Response of the Strongly-Driven Jaynes-
Cummings Oscillator,” Physical Review Letters, vol. 105, no. 10, May 2010. doi: 10.1103/
PhysRevLett.105.100505. arXiv: 1005.0377. [Online]. Available: http://arxiv.org/
abs/1005.0377%20http://dx.doi.org/10.1103/PhysRevLett.105.100505.
[15] M. D. Reed, L. DiCarlo, B. R. Johnson, L. Sun, D. I. Schuster, L. Frunzio, and R. J.
Schoelkopf, “High-Fidelity Readout in Circuit Quantum Electrodynamics Using the Jaynes-
Cummings Nonlinearity,” Physical Review Letters, vol. 105, no. 17, Apr. 2010. doi: 10.
1103/PhysRevLett.105.173601. arXiv: 1004.4323. [Online]. Available: http://arxiv.
org/abs/1004.4323%20http://dx.doi.org/10.1103/PhysRevLett.105.173601.
[16] T. K. Mavrogordatos, G. Tancredi, M. Elliott, M. J. Peterer, A. Patterson, J. Rahamim,
P. J. Leek, E. Ginossar, and M. H. Szymańska, “Simultaneous bistability of qubit and res-
onator in circuit quantum electrodynamics,” Physical Review Letters, vol. 118, no. 4, Nov.
2016. doi: 10.1103/PhysRevLett.118.040402. arXiv: 1611.10354. [Online]. Available:
http://arxiv.org/abs/1611.10354%20http://dx.doi.org/10.1103/PhysRevLett.
118.040402.
[17] M. Boissonneault, J. M. Gambetta, and A. Blais, “Dispersive regime of circuit QED:
photon-dependent qubit dephasing and relaxation rates,” Tech. Rep., 2008. arXiv: 0810.
1336v2.
[18] J. Gambetta, A. Blais, D. I. Schuster, A. Wallraff, L. Frunzio, J. Majer, M. H. Devoret,
S. M. Girvin, and R. J. Schoelkopf, “Qubit-photon interactions in a cavity: Measurement
induced dephasing and number splitting,” Tech. Rep., 2006.
[19] J. M. Chow, L. Dicarlo, J. M. Gambetta, F. Motzoi, L. Frunzio, S. M. Girvin, and R. J.
Schoelkopf, “Optimized driving of superconducting artificial atoms for improved single-
qubit gates,” Physical Review A - Atomic, Molecular, and Optical Physics, vol. 82, no. 4,
p. 040 305, Oct. 2010, issn: 10502947. doi: 10.1103/PhysRevA.82.040305.
指導教授 陳永富(Yung-Fu CHEN) 審核日期 2020-7-14
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明