博碩士論文 108222034 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:19 、訪客IP:3.148.108.134
姓名 朱哲門(Che-Men, Chu)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Growth of the twisted bilayer graphene through the two-stage chemical vapor deposition)
相關論文
★ 細菌地毯微流道中的次擴散動力學★ Role of strain in the solid phase epitaxial regrowth of dopant and isovalent impurities co-doped silicon
★ hydrodynamic spreading of forces from bacterial carpet★ What types of defects are created on supported chemical vapor deposition grown graphene by scanning probe lithography in ambient?
★ 以掃描式電容顯微鏡研究硼離子在矽基板中的瞬態增強擴散行為★ 應變及摻雜相互對以磷離子佈植之碳矽基板的固態磊晶成長動力學之研究
★ 雜質在假晶型碳矽合金對張力之熱穩定性影響★ Revisiting the role of strain in solid-phase epitaxial regrowth of ion-implanted silicon
★ 利用選擇性參雜矽基板在石墨稀上局部陽極氧化反應★ Thermal stability of supersaturated carbon incorporation in silicon
★ 氧化銅上的石墨烯在快速化學氣相沉積過程中的成核以及成長動力學★ Reduction dynamics of locally oxidized graphene
★ 微小游泳粒子在固定表面的聚集現象★ Role of impurities in semiconductor: Silicon and ZnO substrate
★ The growth of multilayer graphene through chemical vapor deposition★ Characteristic of defect generated on graphene through pulsed scanning probe lithography
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 我們通過兩階段化學氣相沉積(CVD)研究扭曲的雙層石墨烯的生長。利用協同作用的成核和生長動力學,從銅塊和氣態CHx中殘留的碳雜質中吸收碳源,在銅基體上生長了亞毫米大小的單晶石墨烯晶粒,並在其下方形成了多個合併的吸附層晶粒。通過使用微拉曼映射的光譜特徵的計算機算法研究扭轉角的分佈。除了熱力學更穩定的AB堆疊(AB-雙層石墨烯)或大角度(> 15°)解耦雙層石墨烯(DC-BLG)配置之外,還有一些雙層區域包含特定的扭曲角(3〜8°,8〜13 °和11-15°)(稱為扭曲雙層石墨烯)。統計數據表明,具有單個成核中心的雙層石墨烯沒有扭曲雙層石墨烯形成。 扭曲雙層石墨烯的形成概率在很大程度上取決於合併的增加層晶粒的相對取向。在未創建扭曲雙層石墨烯域的情況下,在AB-DC合併事件中形成的晶界處發現了明顯的缺陷。 扭曲雙層石墨烯的面積分數隨H2 / CH4比的增加而增加。鑑於第二層晶粒之間的相互作用,並考慮了在添加層合併過程中產生的應變,討論了扭曲雙層石墨烯的生長機理。
摘要(英) The research is about the growth of twisted bilayer graphene through a two-stage chemical vapor deposition (CVD). The graphene grows on Cu toward sub-millimeter-sized single crystalline graphene grains with multiple merged adlayer grains formed underneath. Developing the synergetic nucleation and growth dynamics involve carbon sources from the residual carbon impurities in Cu bulk and gaseous CHx. The distribution of the twist angles is investigated through a computer algorithm utilizing spectral features from micro-Raman mapping. Apart from the thermodynamically stable AB-stacking (AB-BLG) or large angle (> 15°) decoupled bilayer graphene (DC-BLG) configurations, some inspection of bilayer regions contain specific twist angles (3~8°, 8~13°, and 11-15°) (termed as TBLG). The statistics show no TBLG formation for BLG with single nucleation center. The formation probability of TBLG clearly reflects the orientation mismatch of merging adlayer grains. Significant defects are found at the grain boundaries formed in AB-DC merging event without creating TBLG domain. The areal fraction of TBLG increases as H2/CH4 ratio increases. The growth mechanism of TBLG is discussed in light of the interactions between the second layer grains with consideration of strain generation during the merging of adlayers.
關鍵字(中) ★ 化學氣相層積
★ 石墨烯
★ 旋轉角
★ 拉曼光譜學
關鍵字(英) ★ CVD
★ graphene
★ twist angle
★ Raman spectroscopy
論文目次 Content
Figure list
Chapter 1 Introduction 1
Chapter 2 Background 4
2.1 Graphene 4
2.2 Chemical vapor deposition of graphene 12
2.2.1 Chemical vapor deposition 12
2.2.1 Orientation in graphene 18
2.3 Raman spectroscopy 25
2.3.1 Characterization of graphene in Raman spectroscopy 31
2.3.2 Characterization in twisted graphene 35
Chapter 3 Experiment set-up and method 39
3.1 Sample preparation 39
3.1.1 CVD process of graphene growth 39
3.1.2 Graphene transfer 42
3.2 Micro Raman spectroscopy 44
3.3 Dispersion of twist angles 46
Chapter 4 Result and discussion 51
4.1 The growth of the second layer 51
4.2 Strain from the transfer 54
4.3 Multiple nucleation adlayer 58
4.4 Tuning twisted BLG 67
Chapter 5 Conclusion 69
Acknowledgement 70
參考文獻 [1] A. H. Castro Neto, F. Guinea, N. M. R. Peres, K. S. Novoselov, and A. K. Geim, “The electronic properties of graphene,” Rev. Mod. Phys., vol. 81, no. 1, pp. 109–162, 2009.
[2] J. M. Raimond, M. Brune, Q. Computation, F. De Martini, and C. Monroe, “Electric Field Effect in Atomically Thin Carbon Films,” vol. 306, no. October, pp. 666–670, 2004.
[3] A. A. Balandin et al., “Superior Thermal Conductivity of Single-Layer Graphene,” Nano Lett., vol. 8, no. 3, pp. 902–907, Mar. 2008.
[4] A. K. Geim and K. S. Novoselov, “The rise of graphene,” Nat. Mater., vol. 6, p. 183, Mar. 2007.
[5] X. Li et al., “Large-Area Synthesis of High-Quality and Uniform Graphene Films on Copper Foils,” Science (80-. )., vol. 324, no. 5932, pp. 1312 LP – 1314, Jun. 2009.
[6] X. Li et al., “Graphene Films with Large Domain Size by a Two-Step Chemical Vapor Deposition Process,” Nano Lett., vol. 10, no. 11, pp. 4328–4334, Nov. 2010.
[7] C. W. Magnuson et al., “Copper oxide as a ‘self-cleaning’ substrate for graphene growth,” J. Mater. Res., vol. 29, no. 3, pp. 403–409, 2014.
[8] X. Li et al., “Large-Area Graphene Single Crystals Grown by Low-Pressure Chemical Vapor Deposition of Methane on Copper,” J. Am. Chem. Soc., vol. 133, no. 9, pp. 2816–2819, Mar. 2011.
[9] Q. Yu et al., “Control and characterization of individual grains and grain boundaries in graphene grown by chemical vapour deposition,” Nat. Mater., vol. 10, p. 443, May 2011.
[10] H. Wang et al., “Controllable Synthesis of Submillimeter Single-Crystal Monolayer Graphene Domains on Copper Foils by Suppressing Nucleation,” J. Am. Chem. Soc., vol. 134, no. 8, pp. 3627–3630, Feb. 2012.
[11] Y. Hao et al., “The Role of Surface Oxygen in the Growth of Large Single-Crystal Graphene on Copper,” Science (80-. )., vol. 342, no. 6159, pp. 720 LP – 723, Nov. 2013.
[12] J. Kotakoski and J. C. Meyer, “Mechanical properties of polycrystalline graphene based on a realistic atomistic model,” Phys. Rev. B, vol. 85, no. 19, p. 195447, May 2012.
[13] S. Choubak, P. L. Levesque, E. Gaufres, M. Biron, P. Desjardins, and R. Martel, “Graphene CVD: Interplay Between Growth and Etching on Morphology and Stacking by Hydrogen and Oxidizing Impurities,” J. Phys. Chem. C, vol. 118, no. 37, pp. 21532–21540, Sep. 2014.
[14] X. Li, L. Colombo, and R. S. Ruoff, “Synthesis of Graphene Films on Copper Foils by Chemical Vapor Deposition,” Adv. Mater., vol. 28, no. 29, pp. 6247–6252, Aug. 2016.
[15] M.-C. Chuang and W.-Y. Woon, “Nucleation and growth dynamics of graphene on oxygen exposed copper substrate,” Carbon N. Y., vol. 103, pp. 384–390, 2016.
[16] Y. Hao et al., “Oxygen-activated growth and bandgap tunability of large single-crystal bilayer graphene,” Nat. Nanotechnol., vol. 11, no. 5, pp. 426–431, 2016.
[17] Y. Zhang et al., “Direct observation of a widely tunable bandgap in bilayer graphene,” Nature, vol. 459, p. 820, Jun. 2009.
[18] Y. Cao et al., “Unconventional superconductivity in magic-angle graphene superlattices,” Nature, vol. 556, no. 7699, pp. 43–50, Mar. 2018.
[19] F. Schwierz, “Graphene transistors,” Nat. Nanotechnol., vol. 5, p. 487, May 2010.
[20] F. Xia, D. B. Farmer, Y. Lin, and P. Avouris, “Graphene Field-Effect Transistors with High On/Off Current Ratio and Large Transport Band Gap at Room Temperature,” Nano Lett., vol. 10, no. 2, pp. 715–718, Feb. 2010.
[21] N. Yang, K. Choi, J. Robertson, and H. G. Park, “Layer-selective synthesis of bilayer graphene via chemical vapor deposition,” 2D Mater., vol. 4, no. 3, p. 035023, Aug. 2017.
[22] I. Vlassiouk et al., “Role of Hydrogen in Chemical Vapor Deposition Growth of Large Single-Crystal Graphene,” ACS Nano, vol. 5, no. 7, pp. 6069–6076, Jul. 2011.
[23] Y. Cao et al., “Correlated insulator behaviour at half-filling in magic-angle graphene superlattices,” Nature, vol. 556, p. 80, Mar. 2018.
[24] C.-C. Chan, W.-L. Chung, and W.-Y. Woon, “Nucleation and growth kinetics of multi-layered graphene on copper substrate,” Carbon N. Y., vol. 135, pp. 118–124, 2018.
[25] G. Yang, L. Li, W. B. Lee, and M. C. Ng, “Structure of graphene and its disorders: a review,” Sci. Technol. Adv. Mater., vol. 19, no. 1, pp. 613–648, 2018.
[26] G. J. Bullen, R. Mason, and P. Pauling, “Pyrolytic Carbon Formation from Carbon Suboxide,” Nature, vol. 189, pp. 291–292, 1961.
[27] J. Coraux, A. T. N‘Diaye, C. Busse, and T. Michely, “Structural Coherency of Graphene on Ir(111),” Nano Lett., vol. 8, no. 2, pp. 565–570, Feb. 2008.
[28] P. W. Sutter, J.-I. Flege, and E. A. Sutter, “Epitaxial graphene on ruthenium,” Nat. Mater., vol. 7, p. 406, Apr. 2008.
[29] L. Baraton et al., “On the mechanisms of precipitation of graphene on nickel thin films,” EPL (Europhysics Lett., vol. 96, no. 4, p. 46003, 2011.
[30] A. N. Obraztsov, E. A. Obraztsova, A. V. Tyurnina, and A. A. Zolotukhin, “Chemical vapor deposition of thin graphite films of nanometer thickness,” Carbon N. Y., 2007.
[31] B. M. Singleton and P. Nash, “The C-Ni ( Carbon-Nickel ) System,” Bull. Alloy Phase Diagrams, vol. 10, no. 2, pp. 121–122, 1989.
[32] G. A. López and E. J. Mittemeijer, “The solubility of C in solid Cu,” Scr. Mater., vol. 51, no. 1, pp. 1–5, 2004.
[33] T. Bligaard and J. K. Nørskov, “Scaling Properties of Adsorption Energies for Hydrogen-Containing Molecules on Transition-Metal Surfaces,” Phys. Rev. Lett., vol. 016105, no. July, pp. 4–7, 2007.
[34] H. Shu, X. Tao, and F. Ding, “What are the active carbon species during graphene chemical vapor deposition growth ?,” Nanoscale, vol. 7, pp. 1627–1634, 2015.
[35] C. G. de Walle and J. Neugebauer, “First-Principles Surface Phase Diagram for Hydrogen on GaN Surfaces,” Phys. Rev. Lett., vol. 88, no. 6, p. 66103, 2002.
[36] Y. Kangawa, T. Ito, A. Taguchi, K. Shiraishi, and T. Ohachi, “A new theoretical approach to adsorption–desorption behavior of Ga on GaAs surfaces,” Surf. Sci., vol. 493, no. 1, pp. 178–181, 2001.
[37] P. Koskinen, S. Malola, and H. Häkkinen, “Evidence for graphene edges beyond zigzag and armchair,” Phys. Rev. B, vol. 80, no. 7, p. 73401, Aug. 2009.
[38] T. Ma et al., “Edge-controlled growth and kinetics of single-crystal graphene domains by chemical vapor deposition,” vol. 110, no. 51, pp. 20386–200391, 2013.
[39] D. Geng et al., “Controlled Growth of Single-Crystal Twelve-Pointed Graphene Grains on a Liquid Cu Surface,” Adv. Mater., vol. 26, no. 37, pp. 6423–6429, Oct. 2014.
[40] W. Guo et al., “Governing Rule for Dynamic Formation of Grain Boundaries in Grown Graphene,” ACS Nano, vol. 9, no. 6, pp. 5792–5798, 2015.
[41] J. Dong, D. Geng, F. Liu, and F. Ding, “Formation of Twinned Graphene Polycrystals,” Angew. Chemie Int. Ed., vol. 58, no. 23, pp. 7723–7727, Jun. 2019.
[42] X. Zhang, Z. Xu, Q. Yuan, J. Xin, and F. Ding, “The favourable large misorientation angle grain boundaries in graphene,” vol. 7, pp. 20082–20088, 2015.
[43] L. G. Canifmmode mboxccelse çfiado, M. A. Pimenta, B. R. A. Neves, M. S. S. Dantas, and A. Jorio, “Influence of the Atomic Structure on the Raman Spectra of Graphite Edges,” Phys. Rev. Lett., vol. 93, no. 24, p. 247401, 2004.
[44] A. C. Ferrari et al., “Raman spectrum of graphene and graphene layers,” Phys. Rev. Lett., vol. 97, no. 18, pp. 1–4, 2006.
[45] A. Das et al., “Monitoring dopants by Raman scattering in an electrochemically top-gated graphene transistor,” Nat. Nanotechnol., vol. 3, p. 210, Mar. 2008.
[46] T. M. G. Mohiuddin et al., “Uniaxial strain in graphene by Raman spectroscopy: $G$ peak splitting, Grüneisen parameters, and sample orientation,” Phys. Rev. B, vol. 79, no. 20, p. 205433, 2009.
[47] M. M. Lucchese et al., “Quantifying ion-induced defects and Raman relaxation length in graphene,” Carbon N. Y., vol. 48, no. 5, pp. 1592–1597, 2010.
[48] A. A. Balandin, “Thermal properties of graphene and nanostructured carbon materials,” Nat. Mater., vol. 10, p. 569, Jul. 2011.
[49] V. Carozo, C. M. Almeida, E. H. M. Ferreira, L. G. Cançado, C. A. Achete, and A. Jorio, “Raman Signature of Graphene Superlattices,” Nano Lett., vol. 11, no. 11, pp. 4527–4534, Nov. 2011.
[50] R. A. Jishi, L. Venkataraman, M. S. Dresselhaus, and G. Dresselhaus, “Phonon modes in carbon nanotubules,” Chem. Phys. Lett., vol. 209, no. 1, pp. 77–82, 1993.
[51] “Vibrations in sp2 Nanocarbons,” Raman Spectroscopy in Graphene Related Systems. pp. 53–72, 31-Jan-2011.
[52] L. M. Malard, M. A. Pimenta, G. Dresselhaus, and M. S. Dresselhaus, “Raman spectroscopy in graphene,” Phys. Rep., vol. 473, no. 5–6, pp. 51–87, 2009.
[53] R. Beams, L. Gustavo Cançado, and L. Novotny, “Raman characterization of defects and dopants in graphene,” J. Phys. Condens. Matter, vol. 27, no. 8, p. 83002, 2015.
[54] G. Heo, Y. S. Kim, S.-H. Chun, and M.-J. Seong, “Polarized Raman spectroscopy with differing angles of laser incidence on single-layer graphene,” Nanoscale Res. Lett., vol. 10, no. 1, p. 45, 2015.
[55] R. Beams, L. G. Canc, and L. Novotny, “Raman characterization of defects and dopants in graphene,” J. Phys. Condens. Matter, vol. 27, p. 083002, 2015.
[56] L. G. Cançado et al., “Quantifying Defects in Graphene via Raman Spectroscopy at Different Excitation Energies,” Nano Lett., vol. 11, no. 8, pp. 3190–3196, Aug. 2011.
[57] W.-J. Huang and W.-Y. Woon, “Ion implantation of graphene with keV carbon ions: Defect types, evolution and substrate effects,” Vacuum, vol. 166, pp. 72–78, 2019.
[58] P. Lespade, A. Marchand, M. Couzi, and F. Cruege, “Caracterisation de materiaux carbones par microspectrometrie Raman,” Carbon N. Y., vol. 22, no. 4, pp. 375–385, 1984.
[59] C. H. Lui et al., “Observation of Layer-Breathing Mode Vibrations in Few-Layer Graphene through Combination Raman Scattering,” Nano Lett., vol. 12, no. 11, pp. 5539–5544, Nov. 2012.
[60] R. P. Vidano, D. B. Fischbach, L. J. Willis, and T. M. Loehr, “Observation of Raman band shifting with excitation wavelength for carbons and graphites,” Solid State Commun., vol. 39, no. 2, pp. 341–344, 1981.
[61] R. He et al., “Observation of Low Energy Raman Modes in Twisted Bilayer Graphene,” Nano Lett., vol. 13, no. 8, pp. 3594–3601, Aug. 2013.
[62] R. W. Havener, H. Zhuang, L. Brown, R. G. Hennig, and J. Park, “Angle-Resolved Raman Imaging of Interlayer Rotations and Interactions in Twisted Bilayer Graphene,” Nano Lett., vol. 12, no. 6, pp. 3162–3167, Jun. 2012.
[63] K. Kim et al., “Raman Spectroscopy Study of Rotated Double-Layer Graphene: Misorientation-Angle Dependence of Electronic Structure,” Phys. Rev. Lett., vol. 108, no. 24, p. 246103, Jun. 2012.
[64] Z. Ni et al., “$G$-band Raman double resonance in twisted bilayer graphene: Evidence of band splitting and folding,” Phys. Rev. B, vol. 80, no. 12, p. 125404, Sep. 2009.
[65] J. Campos-Delgado, L. G. Cançado, C. A. Achete, A. Jorio, and J.-P. Raskin, “Raman scattering study of the phonon dispersion in twisted bilayer graphene,” Nano Res., vol. 6, no. 4, pp. 269–274, Apr. 2013.
[66] L. Brown, R. Hovden, P. Huang, M. Wojcik, D. A. Muller, and J. Park, “Twinning and twisting of tri- and bilayer graphene,” Nano Lett., vol. 12, no. 3, pp. 1609–1615, 2012.
[67] K.-D. Park, M. B. Raschke, J. M. Atkin, Y. H. Lee, and M. S. Jeong, “Probing Bilayer Grain Boundaries in Large-Area Graphene with Tip-Enhanced Raman Spectroscopy,” Adv. Mater., vol. 29, no. 7, p. 1603601, Feb. 2017.
[68] Z. Zhao et al., “An etching phenomenon exhibited by chemical vapor deposited graphene on a copper pocket,” Carbon N. Y., 2016.
[69] Y. Chen et al., “Raman mapping investigation of chemical vapor deposition-fabricated twisted bilayer graphene with irregular grains,” Phys. Chem. Chem. Phys., vol. 16, no. 39, pp. 21682–21687, 2014.
指導教授 溫偉源(Wei-Yen, Woon) 審核日期 2020-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明