博碩士論文 107222027 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:14 、訪客IP:3.144.42.196
姓名 林禮興(Li-Shing Lin)  查詢紙本館藏   畢業系所 物理學系
論文名稱
(Dynamics of the free boundary of a monolayer cell sheet)
相關論文
★ 鍺銻碲相變化奈米薄膜之奈米尺度光熱性質的研究★ 波在一維系統中的傳播與局域化
★ 生物膜黏著引發的相分離—等效膜勢與數值模擬★ 非平衡生物膜上的區塊形成
★ 液滴上的彈性網絡★ 受體配體叢集在外力下的理論研究
★ 兩板間黏著叢集的強度★ 粒子黏著於生物膜所引發的細胞攝入作用之物理研究
★ 黏著叢集在時變外力下的強度★ 滲透壓對單層巨型微胞的影響
★ 模擬被clathrin蛋白質覆蓋的板塊狀胞吞作用★ T細胞受體活化反應之模型
★ Modeling geometrical trajectories of actin-based motility★ 隨機布耳網路在多連線且臨界情形下的特性
★ 模擬脂質雙層膜上的分子機器★ 組織動力學之建模
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 單層細胞片(monolayer cell sheet)相較於多層細胞片(multilayer cell sheet)在實驗上有著易於控制和觀測的優點。有別於多層細胞片,單層細胞片的細胞和基質間的後曳力(drag force)主宰了系統中的耗散機制,且系統中單位面積的細胞數可隨著擾動漲落。本論文建構了一理論模型以描述由不自行爬行且平行於邊界排列的紡錘狀細胞所組成的單層細胞片之動力學。我們的模型預測了在微小的擾動之下,細胞排列方向固定的單層細胞片總是穩定的。然而,當單層細胞片中之細胞排列方向隨著微擾擺動時,系統在長波長微擾下不穩定。增加細胞之活性收縮力或減少細胞片之寬度皆會使得系統回復至穩態的速率下降,並使得細胞排列方向不固定之系統更加不穩定。
摘要(英) In vitro, monolayer cell sheets are easy to be controlled and observed in comparison to multilayered cell sheets. Different from multilayered systems, cell-substrate drag in a monolayer cell sheet dominates and the number of cells per unit area fluctuates under perturbations. In this {it thesis}, we construct a theoretical model to describe the dynamics of monolayer cell sheets with spindle-shaped non-motile cells aligned parallel to the boundaries. Our model predicts that monolayer cell sheets with fixed orientation are always stable under small perturbations, while those with fluctuating cell orientations are not stable in the long-wavelength limit. Increasing active contractility or decreasing sheet width decreases the relaxation rate of the system, and increases the range of the unstable region in the cases with fluctuating cell orientation.
關鍵字(中) ★ 生物物理
★ 軟物質
★ 上皮組織
關鍵字(英) ★ Biophysics
★ soft matter
★ active matter
★ cell sheet
★ Epithelium
論文目次 1. Introduction ... P.1
2. Hydrodynamic description ... P.6
3. Monolayer cell sheets with fixed cell orientation ... P.14
4. Monolayer cell sheets with fluctuating cell orientations ... P.26
5. Conclusion ... P.38
參考文獻 [1] Alfons TL Van Lommel. From cells to organs: a histology textbook and atlas. Springer Science & Business Media, New York, 2003.
[2] Bruce Alberts, Alexander D. Johnson, Julian Lewis, David Morgan, Martin Raff, Keith Roberts, and Peter Walter. Molecular biology of the cell. 4th ed. Garland Science, Taylor and Francis Group, New York, 2002.
[3] Jo Ann Eurell and Brian L Frappier. Dellmann’s textbook of veterinary histology. John Wiley & Sons, Hoboken, 2013.
[4] Elaine Nicpon Marieb and Katja Hoehn. Human anatomy & physiology. Pearson edu- cation, London, 2007.
[5] Julien Deseigne, Olivier Dauchot, and Hugues Chat ́e. Collective motion of vibrated polar disks. Physical Review Letters, 105(9):098001, 2010.
[6] Balint Szabo, GJ Szo ̈llo ̈si, B G ̈onci, Zs Jura ́nyi, David Selmeczi, and Tam ́as Vicsek. Phase transition in the collective migration of tissue cells: experiment and model. Phys- ical Review E, 74(6):061908, 2006.
[7] Mathieu Poujade, Erwan Grasland-Mongrain, A Hertzog, J Jouanneau, Philippe Chavrier, Benoˆıt Ladoux, Axel Buguin, and Pascal Silberzan. Collective migration of an epithelial monolayer in response to a model wound. Proceedings of the National Academy of Sciences, USA, 104(41):15988–15993, 2007.
[8] Guillaume Duclos, Simon Garcia, HG Yevick, and P Silberzan. Perfect nematic order in confined monolayers of spindle-shaped cells. Soft matter, 10(14):2346–2353, 2014.
[9] Harvey Lodish, Arnold Berk, Chris A Kaiser, Monty Krieger, Matthew P Scott, Anthony Bretscher, Hidde Ploegh, and Paul Matsudaira. Molecular cell biology. Macmillan, London, 2008.
[10] Benjamin J Dubin-Thaler, Jake M Hofman, Yunfei Cai, Harry Xenias, Ingrid Spielman, Anna V Shneidman, Lawrence A David, Hans-Gu ̈nther Do ̈bereiner, Chris H Wiggins, and Michael P Sheetz. Quantification of cell edge velocities and traction forces reveals distinct motility modules during cell spreading. PloS one, 3(11):e3735, 2008.
[11] Nir S Gov and Ajay Gopinathan. Dynamics of membranes driven by actin polymeriza- tion. Biophysical journal, 90(2):454–469, 2006.
[12] J-F Joanny, Karsten Kruse, Jacques Prost, and Sriram Ramaswamy. The actin cortex as an active wetting layer. The European Physical Journal E, 36(5):1–6, 2013.
[13] A Zemel, F Rehfeldt, AEX Brown, DE Discher, and SA Safran. Cell shape, spreading symmetry, and the polarization of stress-fibers in cells. Journal of Physics: Condensed Matter, 22(19):194110, 2010.
[14] Ulrich S Schwarz and Samuel A Safran. Physics of adherent cells. Reviews of Modern Physics, 85(3):1327, 2013.
[15] Adam J Engler, Shamik Sen, H Lee Sweeney, and Dennis E Discher. Matrix elasticity directs stem cell lineage specification. Cell, 126(4):677–689, 2006.
[16] Ning Wang, Emanuele Ostuni, George M Whitesides, and Donald E Ingber. Micropat- terning tractional forces in living cells. Cell Motility and the Cytoskeleton, 52(2):97–106, 2002.
[17] Manuel Th ́ery, Anne P ́epin, Emilie Dressaire, Yong Chen, and Michel Bornens. Cell distribution of stress fibres in response to the geometry of the adhesive environment. Cell Motility and the Cytoskeleton, 63(6):341–355, 2006.
[18] Vikram S Deshpande, Robert M McMeeking, and Anthony G Evans. A bio-chemo- mechanical model for cell contractility. Proceedings of the National Academy of Sciences, 103(38):14015–14020, 2006.
[19] A Zemel, F Rehfeldt, AEX Brown, DE Discher, and SA Safran. Optimal matrix rigidity for stress-fibre polarization in stem cells. Nature Physics, 6(6):468–473, 2010.
[20] Ralf Kemkemer, Cornelia Neidlinger-Wilke, Lutz Claes, and Hans Gruler. Cell orienta- tion induced by extracellular signals. Cell Biochemistry and Biophysics, 30(2):167–192, 1999.
[21] XF Walboomers, W Monaghan, ASG Curtis, and JA Jansen. Attachment of fibroblasts on smooth and microgrooved polystyrene. Journal of Biomedical Materials Research: An Official Journal of The Society for Biomaterials, The Japanese Society for Biomaterials, and The Australian Society for Biomaterials, 46(2):212–220, 1999.
[22] Laurence Petitjean, Myriam Reffay, Erwan Grasland-Mongrain, Mathieu Poujade, Benoıt Ladoux, Axel Buguin, and Pascal Silberzan. Velocity fields in a collectively migrating epithelium. Biophysical journal, 98(9):1790–1800, 2010.
[23] Wei-Ting Yeh and Hsuan-Yi Chen. Hydrodynamics of stratified epithelium: steady state and linearized dynamics. Physical Review E, 93(5):052421, 2016.
[24] Ricard Alert, Carles Blanch-Mercader, and Jaume Casademunt. Active fingering insta- bility in tissue spreading. Physical Review Letters, 122(8):088104, 2019.
[25] Evelyn KF Yim, Ron M Reano, Stella W Pang, Albert F Yee, Christopher S Chen, and Kam W Leong. Nanopattern-induced changes in morphology and motility of smooth muscle cells. Biomaterials, 26(26):5405–5413, 2005.
[26] Frank Juelicher, Karsten Kruse, Jacques Prost, and J-F Joanny. Active behavior of the cytoskeleton. Physics Reports, 449(1-3):3–28, 2007.
[27] Dennis Bray. Cell movements: from molecules to motility. 2nd ed., Talyor and Francis, New York, 2001.
[28] M Cristina Marchetti, Jean-Fran ̧cois Joanny, Sriram Ramaswamy, Tanniemola B Liv- erpool, Jacques Prost, Madan Rao, and R Aditi Simha. Hydrodynamics of soft active matter. Reviews of Modern Physics, 85(3):1143, 2013.
[29] John Toner and Yuhai Tu. Flocks, herds, and schools: A quantitative theory of flocking. Physical Review E, 58(4):4828, 1998.
[30] Samuel Safran. Statistical thermodynamics of surfaces, interfaces, and membranes. CRC Press, Boca Raton, 2018.
[31] Pierre-Gilles De Gennes and Jacques Prost. The physics of liquid crystals, 2nd ed., volume 83. Clarendon Press, Oxford, 1993.
[32] Rapha ̈el Etournay, Marko Popovi ́c, Matthias Merkel, Amitabha Nandi, Corinna Blasse, Benoˆıt Aigouy, Holger Brandl, Gene Myers, Guillaume Salbreux, Frank Ju ̈licher, et al. Interplay of cell dynamics and epithelial tension during morphogenesis of the drosophila pupal wing. Elife, 4:e07090, 2015.
[33] Lee A Segel and George H Handelman. Mathematics applied to continuum mechanics. SIAM, University City, Philadelphia, 2007.
[34] Jia Hu, Camille Hardy, Chi-Mon Chen, Shu Yang, Arkady S Voloshin, and Yaling Liu. Enhanced cell adhesion and alignment on micro-wavy patterned surfaces. PLoS One, 9(8):e104502, 2014.
[35] T Omelchenko, JM Vasiliev, IM Gelfand, HH Feder, and EM Bonder. Rho-dependent formation of epithelial “leader” cells during wound healing. Proceedings of the National Academy of Sciences, 100(19):10788–10793, 2003.
[36] Silvina Grasso, Julio A Hern ́andez, and Silvia Chifflet. Roles of wound geometry, wound size, and extracellular matrix in the healing response of bovine corneal endothelial cells in culture. American Journal of Physiology-Cell Physiology, 293(4):C1327–C1337, 2007.
[37] Philip Vitorino and Tobias Meyer. Modular control of endothelial sheet migration. Genes & development, 22(23):3268–3281, 2008.
指導教授 陳宣毅(Hsuan-Yi Chen) 審核日期 2020-7-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明