博碩士論文 107622003 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:27 、訪客IP:3.144.77.71
姓名 陳昭邑(Chao-Yi Chen)  查詢紙本館藏   畢業系所 地球科學學系
論文名稱 台灣西南部衰減模式分析
(The Analysis of Three-Dimension Attenuation Tomography in Southwestern Taiwan)
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 本研究藉由研究台灣西南部的衰減模型(Q-1,Q:品質因子)來了解當地的構造特徵。衰減(attenuation)是了解地球內部構造的重要物理參數,但由於地震資料的缺乏,過去一直無法在台灣西南部得到解析度足夠的衰減模型。2010年,甲仙發生了西南台灣相隔46年的規模6以上的大地震,之後又相繼發生了2012霧台地震及2016的美濃地震,豐富了此區的地震資料,也提供我們進一步了解台灣西南部構造的可能性。
本文的研究區間在東經120°至121°,北緯22.3°至23.3°。我們使用1991至2016年間的ML 3.5至5.5的TSMIP資料進行分析,在ω2-source model以及Q與頻率無關的假設下,使用格點搜尋(grid search)找到其對應的總路徑衰減運算子(t*-operator)。有了t*與已知的三維速度構造,利用區域性地震影像層析法 (local earthquake tomography, LET) 即可得到三維Q模型。在研究中,我們分別嘗試了網格間距10公里及5公里的模型,以期達到穩定模型與構造研究的平衡。
研究結果顯示此區的地震集中在深度25公里以內的QP和QS (QP:由P波所得之Q;QS:由S波所得之Q) 高區,這些高Q的地區大致位於西部麓山帶。深度5公里時在東經120.5°的附近有一片低QP值的區域可反映出高雄基盤的位置。在柴山地區淺層的高雄石灰岩可能導致了當地的高QP、QS數值。在此區龍船斷層、旗山斷層等斷層兩側皆可發現Q值的側向變化。在2016美濃主震以西的淺層可看到一低QP、QS跟高QP/QS的區域,可能是因高孔隙液壓的古亭坑泥岩所導致。
摘要(英) We used waveform data from Taiwan Strong Motion Instrumentation Program (TSMIP) to analyze the attenuation property of southwestern Taiwan. The original data is the spectrums of P- wave and S- wave from 1991 to 2016 with ML 3.5 to 5.5. Then we got 324 events for QP and 394 events for QS. First, we used grid search to determine t* by assuming a ?2-source- model and a frequency-independent Q. The corner frequency of each event was fixed, and we defined a quality index to weight data for the inversion. Finally, we got QP and QS model of southwestern Taiwan by Local Earthquake Tomography (LET).
The results show that high Q region with higher seismicity which is located in Western Foothills and the low QP area in 5 km depth implies the position of Kaohsiung basement. The Kaohsiung limestone contributes to the high Q in the shallower part of Shoushan. The lateral Q variation is observed in many faults. Our results imply that there is a high fluid pressure zone with low Q and high QP/QS above the hypocenter of the 2016 Meinong earthquake. On the other hand, a low fluid pressure zone with high Q and low QP/QS exists beneath the hypocenter.
關鍵字(中) ★ 衰減
★ 影相層析
關鍵字(英) ★ attenuation
★ tomography
論文目次 摘要....................................................................................................................... I ABSTRACT........................................................................................................III 誌謝.................................................................................................................... IV
目錄......................................................................................................................V
圖目錄............................................................................................................... VII
表目錄..................................................................................................................X
第一章 緒論.........................................................................................................1
1.1 研究動機與目的...........................................................................................................................................1 1.2 研究區域概述...............................................................................................................................................1 1.3 文獻回顧.......................................................................................................................................................8 1.4 本文內容.....................................................................................................................................................13
第二章 研究方法...............................................................................................15
2.1 理論基礎.....................................................................................................................................................15 2.2 區域性地震影像分析(LET)..................................................................................................................20 2.3 波線理論.....................................................................................................................................................23
第三章 研究流程...............................................................................................28
3.1 資料選取.....................................................................................................................................................28 3.2 格點搜尋(GRID SEARCH).......................................................................................................................34 3.3 衰減運算子 T*的品質評估........................................................................................................................37 3.4 影像層析運算參數設定.............................................................................................................................42
第四章 研究結果...............................................................................................53 4.1 解析度討論.................................................................................................................................................53
4.2 研究方法探討.............................................................................................................................................59 v
4.3 三維 QP 衰減模型.......................................................................................................................................77 4.4 三維 QS 衰減模型.......................................................................................................................................84 4.5 三維 QP/QS 模型 .........................................................................................................................................90
第五章 討論.......................................................................................................93 5.1 時間變化.....................................................................................................................................................93
5.2 空間分佈.....................................................................................................................................................98 第六章 結論.....................................................................................................115
參考文獻........................................................................................................... 116
參考文獻 Barton, N. (2006). Rock quality, seismic velocity, attenuation and anisotropy. CRC press.
Biete, C., Alvarez‐Marron, J., Brown, D., & Kuo‐Chen, H. (2018). The structure of southwest Taiwan: The development of a fold‐and‐thrust belt on a margins outer shelf and slope. Tectonics, 37(7), 1973-1993.
Chen, K.-J. (1998). S-wave attenuation structure in the Taiwan area and its correlation to seismicity. Terrestrial, Atmospheric and Oceanic Sciences, 9(1), 97-118.
Chen, K.-J., Yeh, Y. H., & Shyu, C. T. (1996). Qp structure in the Taiwan area and its correlation to seismicity. Terr. Atmos. Ocean, 7, 409-429.
Eberhart-Phillips, D. (1993). Local earthquake tomography: earthquake source regions. Seismic tomography: theory and practice.
Eberhart‐Phillips, D., & Chadwick, M. (2002). Three‐dimensional attenuation model of the shallow Hikurangi subduction zone in the Raukumara Peninsula, New Zealand. Journal of Geophysical Research: Solid Earth, 107(B2), ESE 3-1-ESE 3-15.
Hsu, Y.-J., Yu, S.-B., Kuo, L.-C., Tsai, Y.-C., & Chen, H.-Y. (2011). Coseismic deformation of the 2010 Jiashian, Taiwan earthquake and implications for fault activities in southwestern Taiwan. Tectonophysics, 502(3-4), 328-335.
Huang, H.-H., Wu, Y.-M., Song, X., Chang, C.-H., Lee, S.-J., Chang, T.-M., & Hsieh, H.-H. (2014). Joint Vp and Vs tomography of Taiwan: Implications for subduction-collision orogeny. Earth and Planetary Science Letters, 392, 177-191.
Huang, M. H., Tung, H., Fielding, E. J., Huang, H. H., Liang, C., Huang, C., & Hu, J. C. (2016). Multiple fault slip triggered above the 2016 Mw 6.4 MeiNong earthquake in Taiwan. Geophysical Research Letters, 43(14), 7459-7467.
Kuo-Chen, H., Chen, K.-X., Wei-Fang, S., Chun-Wei, H., Yuan-Hsi, L., Guan, Z.-K., Chu-Chun, K., & Wen-Yen, C. (2017). 3D Vs ambient noise tomography of the 2016 M w 6.4 Meinong Earthquake source region in Taiwan. TAO: Terrestrial, Atmospheric and Oceanic Sciences, 28(5), 6.
Kuo‐Chen, H., Wu, F. T., & Roecker, S. W. (2012). Three‐dimensional P velocity structures of the lithosphere beneath Taiwan from the analysis of TAIGER and related seismic data sets. Journal of Geophysical Research: Solid Earth, 117(B6).
116
Lacombe, O., Mouthereau, F., Angelier, J., & Deffontaines, B. (2001). Structural, geodetic and seismological evidence for tectonic escape in SW Taiwan. Tectonophysics, 333(1-2), 323-345.
Lee, S. J., Yeh, T. Y., & Lin, Y. Y. (2016). Anomalously large ground motion in the 2016 ML 6.6 Meinong, Taiwan, earthquake: A synergy effect of source rupture and site amplification. Seismological Research Letters, 87(6), 1319-1326.
Liu, H.-P., Anderson, D. L., & Kanamori, H. (1976). Velocity dispersion due to anelasticity; implications for seismology and mantle composition. Geophysical Journal International, 47(1), 41-58.
Menke, W. (2018). Geophysical data analysis: Discrete inverse theory. Academic press.
Michelini, A., & McEvilly, T. (1991). Seismological studies at Parkfield. I. Simultaneous inversion for velocity structure and hypocenters using cubic B-splines parameterization. Bulletin of the Seismological Society of America, 81(2), 524-552.
Pavlis, G. L., & Booker, J. R. (1980). The mixed discrete‐continuous inverse problem: Application to the simultaneous determination of earthquake hypocenters and velocity structure. Journal of Geophysical Research: Solid Earth, 85(B9), 4801-4810.
Rau, R.-J., Lee, J.-C., Ching, K.-E., Lee, Y.-H., Byrne, T. B., & Chen, R.-Y. (2012). Subduction-continent collision in southwestern Taiwan and the 2010 Jiashian earthquake sequence. Tectonophysics, 578, 107-116.
Rietbrock, A. (2001). P wave attenuation structure in the fault area of the 1995 Kobe earthquake. Journal of Geophysical Research: Solid Earth, 106(B3), 4141-4154.
Sanders, C., Ponko, S., Nixon, L., & Schwartz, E. (1995). Seismological evidence for magmatic and hydrothermal structure in Long Valley caldera from local earthquake attenuation and velocity tomography. Journal of Geophysical Research: Solid Earth, 100(B5), 8311-8326.
Scherbaum, F. (1990). Combined inversion for the three‐dimensional Q structure and source parameters using microearthquake spectra. Journal of Geophysical Research: Solid Earth, 95(B8), 12423-12438.
Schurr, B., Asch, G., Rietbrock, A., Trumbull, R., & Haberland, C. (2003). Complex patterns of fluid and melt transport in the central Andean subduction zone revealed by attenuation tomography. Earth and Planetary Science Letters, 215(1-2), 105-119.
Spencer, C., & Gubbins, D. (1980). Travel-time inversion for simultaneous 117

earthquake location and velocity structure determination in laterally
varying media. Geophysical Journal International, 63(1), 95-116. Stachnik, J. C., Abers, G. A., & Christensen, D. H. (2004). Seismic attenuation and mantle wedge temperatures in the Alaska subduction zone. Journal of
Geophysical Research: Solid Earth, 109(B10).
Thurber, C. (1993). Local earthquake tomography: velocities and V_p/V_s-
Theory. Seismic tomography: theory and practice, 563-583.
Thurber, C. H. (1983). Earthquake locations and three‐dimensional crustal
structure in the Coyote Lake area, central California. Journal of
Geophysical Research: Solid Earth, 88(B10), 8226-8236.
Toomey, D., & Foulger, G. (1989). Tomographic inversion of local earthquake
data from the Hengill‐Grensdalur central volcano complex, Iceland. Journal
of Geophysical Research: Solid Earth, 94(B12), 17497-17510.
Um, J., & Thurber, C. (1987). A fast algorithm for two-point seismic ray tracing.
Bulletin of the Seismological Society of America, 77(3), 972-986. Wang, Y.-J., Chan, C.-H., Lee, Y.-T., Ma, K.-F., Shyu, J. B. H., Rau, R.-J., &
Cheng, C.-T. (2016). Probabilistic seismic hazard assessment for Taiwan. Wang, Y.-J., Ma, K.-F., Mouthereau, F., & Eberhart-Phillips, D. (2010). Three-
dimensional Qp-and Qs-tomography beneath Taiwan orogenic belt: implications for tectonic and thermal structure. Geophysical Journal International, 180(2), 891-910.
Wen, S., Yeh, Y.-L., Chang, Y.-Z., & Chen, C.-H. (2017). The seismogenic process of the 2016 Meinong earthquake, southwest Taiwan. Terr. Atmos. Ocean. Sci, 28, 651-662.
王郁如. (2004). 台灣弧陸碰撞構造之地殼及頂部地函的三維 S 波衰減模型 國立中央大學]. 桃園縣. https://hdl.handle.net/11296/y43zgd
王郁如. (2010). 台灣地殼及頂部地函三維 P 波、S 波衰減模型對於造山帶
構造特性與機制之探討 國立中央大學]. 桃園縣.
https://hdl.handle.net/11296/8grj39
陳文山, 俞何興, 俞震甫, 鍾孫霖, 林正洪, 林啟文, 游能悌, 吳逸民, 王國
龍. (2016). 台灣地質概論. 社團法人中華民國地質學會出版, 台北 市, 1-204.
指導教授 馬國鳳 郭陳澔(Kuo-Fong Ma hao kuo-chen) 審核日期 2020-7-24
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明