博碩士論文 107328005 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:36 、訪客IP:3.144.12.246
姓名 許力允(Li-Yun Syu)  查詢紙本館藏   畢業系所 能源工程研究所
論文名稱 石墨/PDMS多孔複合材料之製備與熱傳性質分析
(Preparation and analysis of graphite/PDMS porous composite material and its thermal properties)
相關論文
★ 石英諧振器之電極面設計對振盪頻率擾動之溫度相依性研究★ 常壓下熱電材料特性量測方法之模擬與分析
★ 以流體式數值模擬直流磁控電漿濺鍍系統之磁場影響★ 利用鉻薄膜為濕蝕刻遮罩製備石英奈米針狀結構之研究
★ 石英蝕刻微結構之非等向性研究★ 具有微結構之石英表面聲波感測器之共振頻率數值模擬與分析
★ 以數值模擬方法探討電感耦合式電漿輔助製程之氣體溫度與腔體熱分析★ 微致冷器之致冷特性數值模擬分析
★ 石英柱狀微結構濕蝕刻製程之研究★ 利用暫態熱微影技術製備高分子微結構
★ 多孔矽製備與熱傳特性量測之研究★ 石英柱狀微結構之表面聲波感測器之研製與特性分析
★ 利用聲子波茲曼方程式模擬非均質奈米多孔材料之熱傳性質★ 利用電子束微影製作高密度石英柱狀結構
★ 薄膜陣列結構微致冷器致冷特性數值模擬★ 利用暫態熱線法之微型熱傳導係數量測元件之設計與製備
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   至系統瀏覽論文 (2025-1-1以後開放)
摘要(中) 複合材料是由基材和填料相互混合而成,因此材料之複合效應為各組成材料及其所形成之介面相互作用下的綜合結果。根據填料種類不同,複合材料之特性也會隨之改變。除了典型複合材料,多孔材料也可視為一種基材與空氣混合之複合材料。根據材料內部孔隙之分布與大小,可發展出許多不同之應用。
本研究之目的為製備高導熱性之PDMS多孔複合材料。首先在製備複合材料時,選擇石墨作為填料,使用機械震盪分散法將其均勻分散於溶液中,再與PDMS做混合即可製備出石墨/PDMS複合材料。在製備多孔結構之部分,採用糖浸法;將石墨/PMDS混合溶液滲透入多孔隙之模具內部後固化,再去除模具即可得到石墨/PDMS多孔複合材料。
使用儀器量測多孔複合材料之基礎性質與熱擴散係數,將其與材料參數結合可得孔隙率與熱傳導係數。在分析上結合複合材料之基本參數並使用不同理論數值模型來預測材料之熱傳導係數,最後將不同模型之計算結果與實驗量測數值做出比較,探討石墨填充濃度與孔隙率對熱傳導性質之影響。結果顯示,增加石墨填充濃度可有效增加材料之熱傳導特性,且大致與填料濃度成正比。在溫度343K左右時,由於試片之結構強度不足,因此在高溫環境下可能產生形變,進而使實際量測數值產生誤差,所以無法利用模型來有效的預測試片之熱傳導係數。
摘要(英) The composite material is formed by mixing the base material and the filler, so the composite effect of the material is the comprehensive result of the interaction of the constituent materials and the interface formed by them. Depending on the type of filler, the characteristics of the composite material will change accordingly. In addition to typical composite materials, porous materials can also be regarded as a composite material in which a substrate and air are mixed. According to the distribution and size of the pores inside the material, many different applications can be developed.
The purpose of this research is preparing PDMS porous composites with high thermal conductivity. First, when preparing the composite material, choose graphite as the filler, use the mechanical vibration dispersion method to uniformly disperse it in the solution, and then mix it with PDMS to prepare the graphite/PDMS composite material. In the preparation of the porous structure, the sugar leaching method is used. The graphite/PMDS mixed solution is penetrated into the porous mold and then cured, and then the mold is removed to obtain the graphite/PDMS porous composite material.
Use instruments to measure the basic properties and thermal diffusivity of porous composite materials, and combine them with material parameters to obtain porosity and thermal conductivity. Analyze the basic parameters of composite materials and use different theoretical numerical models to predict the thermal conductivity of the material. Finally, compare the calculated results of different models with experimental measured values to explore the influence of graphite filling concentration and porosity on the thermal conductivity properties.
The results show that increasing the graphite filling concentration can effectively increase the thermal conductivity of the material, and it is roughly proportional to the filler concentration. At the temperature of 343K, due to the insufficient structural strength of the test piece, deformation may occur in a high-temperature environment, which may cause errors in the actual measured value. Therefore, the model cannot be used to effectively forecast the thermal conductivity of the piece. In the future, it is planned to reduce the porosity of the composite material and increase the filler concentration to increase the thermal conductivity and stability of the material.
關鍵字(中) ★ PDMS複合材料
★ 多孔材料
★ 熱傳導
關鍵字(英) ★ PDMS composite materials
★ porous materials
★ heat conduction
論文目次 1 一、緒論 1
1-1 研究背景 1
1-2 文獻回顧 3
1-3 研究動機與目的 6
1-4 論文架構 7
2 二、理論基礎 8
2-1 多孔材料之製備 8
2-2 典型複合材料與多孔材料之熱傳導特性 11
2-3 基礎熱傳理論 13
2-4 常見石墨分散方式 14
2-5 碳複合材料特性與應用 16
2-6 多孔熱傳數值模型 17
3 三、研究方法 22
3-1 研究架構 22
3-2-1 試片製備 24
3-2-2 製程參數之考量 27
3-3 試片量測方法 30
3-3-1 表面形貌量測 30
3-3-2 雷射閃光熱擴散法 30
4 四、結果與討論 33
4-1 石墨/PDMS多孔複合材料之製備 33
4-1-1 PDMS多孔結構製備 33
4-1-2 石墨微粒處理 35
4-1-3 石墨/PDMS多孔複合材料製備 38
4-2 表面形貌觀測 39
4-2-1 SEM拍攝石墨形貌 43
4-2-2 試片基本參數量測 46
4-2-3 熱傳性質量測結果 48
4-3 材料參數 52
4-4 複合材料之等效熱傳導係數計算 54
4-5 多孔複合材料之等效熱傳導係數計算 59
4-6 實驗結果與理論數值模型分析探討 61
5 五、結論與未來展望 70
5-1 結論 70
5-2 未來工作 71
參考文獻 [1] M. Biercuk, M. C. Llaguno, M. Radosavljevic, J. Hyun, A. T. Johnson, and J. E. J. A. p. l. Fischer, "Carbon nanotube composites for thermal management," vol. 80, no. 15, pp. 2767-2769, 2002.
[2] S. Ganguli, A. K. Roy, and D. P. J. C. Anderson, "Improved thermal conductivity for chemically functionalized exfoliated graphite/epoxy composites," vol. 46, no. 5, pp. 806-817, 2008.
[3] S.-Y. Yang Wei-Ning Lin, Yuan-Li Huang, Hsi-Wen Tien, Jeng-Yu Wang, Chen-Chi M. Ma, Shin-Ming Li, and Yu-Sheng Wang, Synergetic effects of graphene platelets and carbon nanotubes on the mechanical and thermal properties of epoxy composites," vol. 49, no. 3, pp. 793-803, 2011.
[4] H. Chen, I. Botef, H. Zheng, M. Maaza, V. Rao, and V. J. I. j. o. n. Srinivasu, "Thermal conductivity and stability of nanosize carbon-black-filled PDMS: fuel cell perspective," vol. 8, no. 6-7, pp. 437-445, 2011.
[5] Yuanqing Li, Wei-Bin Zhu, Xiao-Guang Yu, Pei Huang, Shao-Yun Fu, Ning Hu, and Kin Liao, "Multifunctional wearable device based on flexible and conductive carbon sponge/polydimethylsiloxane composite," vol. 8, no. 48, pp. 33189-33196, 2016.
[6] A. Rinaldi, A. Tamburrano, M. Fortunato, and M. S. J. S. Sarto, "A flexible and highly sensitive pressure sensor based on a PDMS foam coated with graphene nanoplatelets," vol. 16, no. 12, p. 2148, 2016.
[7] K. J. Cha and D. S. J. B. m. Kim, "A portable pressure pump for microfluidic lab-on-a-chip systems using a porous polydimethylsiloxane (PDMS) sponge," vol. 13, no. 5, p. 877, 2011.
[8] Tingjiao Zhou, Jinbin Yang, Deyong Zhu, Jieyao Zheng, Stephan Handschuh-Wang, Xiaohu Zhou, Junmin Zhang, Yizhen Liu, Zhou Liu, Chuanxin He, and Xuechang Zhou, "Hydrophilic Sponges for Leaf‐Inspired Continuous Pumping of Liquids," vol. 4, no. 6, p. 1700028, 2017.
[9] Hongyu Chena, Valeriy V. Ginzburgb, Jian Yang, Yunfeng Yanga, Wei Liu, Yan Huang, Libo Du, and Bin Chen, "Thermal conductivity of polymer-based composites: Fundamentals and applications," vol. 59, pp. 41-85, 2016.
[10] X. Fu, R. Viskanta, J. J. E. T. Gore, and F. Science, "Measurement and correlation of volumetric heat transfer coefficients of cellular ceramics," vol. 17, no. 4, pp. 285-293, 1998.


[11] C. J. I. J. o. H. Zhao and M. Transfer, "Review on thermal transport in high porosity cellular metal foams with open cells," vol. 55, no. 13-14, pp. 3618-3632, 2012.
[12] K. Pietrak and T. S. J. J. o. P. T. Wiśniewski, "A review of models for effective thermal conductivity of composite materials," vol. 95, no. 1, pp. 14-24, 2014.
[13] D. S. Smith, Arnaud Alzina, Julie Bourret, Benoît Nait-Ali, Fabienne Pennec, and Nicolas Tessier-Doyen, "Thermal conductivity of porous materials," vol. 28, no. 17, pp. 2260-2272, 2013.
[14] R. F. Hill and P. H. J. J. o. t. A. C. S. Supancic, "Thermal conductivity of platelet‐filled polymer composites," vol. 85, no. 4, pp. 851-857, 2002.
[15] W. Parker, R. Jenkins, C. Butler, and G. J. J. o. a. p. Abbott, "Flash method of determining thermal diffusivity, heat capacity, and thermal conductivity," vol. 32, no. 9, pp. 1679-1684, 1961.
[16] B. Wang and S. J. M. Krause, "Properties of dimethylsiloxane microphases in phase-separated dimethylsiloxane block copolymers," vol. 20, no. 9, pp. 2201-2208, 1987.
[17] A. A. J. N. m. Balandin, "Thermal properties of graphene and nanostructured carbon materials," vol. 10, no. 8, pp. 569-581, 2011.
[18] C. Y. Ho, R. W. Powell, and P. E. Liley, "Thermal conductivity of the elements: a comprehensive review," National Standard Reference Data System1974.
指導教授 洪銘聰(Ming-Cong Hong) 審核日期 2020-8-18
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明