博碩士論文 107225017 詳細資訊




以作者查詢圖書館館藏 以作者查詢臺灣博碩士 以作者查詢全國書目 勘誤回報 、線上人數:55 、訪客IP:18.224.64.226
姓名 陳啟郡(Chi-Chun Chen)  查詢紙本館藏   畢業系所 統計研究所
論文名稱 早期臨床試驗模式輔助之兩階段設計
相關論文
★ 藥物最低有效劑量之無母數鑑別★ 根據貝氏檢定建構的第一期臨床試驗設計
★ 第一期臨床試驗之貝氏調適設計★ 強餘震之即時貝氏預測
★ 鑑別最佳添加藥物劑量的兩階段早期臨床試驗設計★ 臺灣地區地下水品質之統計研究
★ 右設限存活資料之下每日可服劑量之研究★ 集集餘震之統計研究
★ 多群資料下最低有效劑量之聯合鑑別★ 最大餘震規模之統計分析
★ 最大餘震發生時間之統計分析★ 地震預測之統計分析
★ 加權Kaplan-Meier統計量之推廣★ 鑑別藥物最低有效劑量之檢定
★ 餘震序列RJ模型之貝氏分析★ 藥物最低有效劑量之穩健鑑別
檔案 [Endnote RIS 格式]    [Bibtex 格式]    [相關文章]   [文章引用]   [完整記錄]   [館藏目錄]   [檢視]  [下載]
  1. 本電子論文使用權限為同意立即開放。
  2. 已達開放權限電子全文僅授權使用者為學術研究之目的,進行個人非營利性質之檢索、閱讀、列印。
  3. 請遵守中華民國著作權法之相關規定,切勿任意重製、散佈、改作、轉貼、播送,以免觸法。

摘要(中) 癌症標靶藥的早期臨床試驗目的在於估計該標靶藥的最佳生物劑量,讓服用該劑量的病患發生劑量限制毒性的機率低於設定的目標毒性機率,但是有最大的機率出現藥效反應。本文針對上述早期臨床試驗提出兩階段設計,第一階段中應用目前第一期臨床試驗設計中方便執行且表現頗佳的模式輔助設計mTPI-2,根據二元毒性反應資料進行快速且安全的調適性劑量配置。第二階段則進行世代試驗,先決定具有可接受毒性的劑量水準集合,然後根據二元的藥效反應資料在該集合中尋找最佳生物劑量。若毒性過強或藥效不足而提前中止試驗,則宣稱該標靶藥無效;若試驗繼續進行,則決定合適劑量水準,然後分別使用調適性或平衡設計隨機配置病人服用劑量。等病患人數達到預定數量,則中止試驗,進行最佳生物劑量的貝氏估計。因應第二階段不同的劑量配置方法,所提的兩階段設計分別記為mTPI2-ARD與mTPI2-BRD。本文針對毒性晚發或藥效延遲的情形,為更能有效縮短試驗的時間,進一步修正上述兩階段設計,分別記為mTPI2L-ARD與mTPI2L-BRD。本文提出的兩階段設計根據累積的毒性與藥效反應資料調整病患使用的劑量,不但降低病患接受過毒劑量的風險且提高病患接受有效劑量的機率。所提的設計無需假設特定的劑量毒性或劑量藥效模式,僅對毒性機率及藥效機率建立共軛先驗分布,進行貝氏分析,故為模式輔助兩階段設計。最後本文在各種不同的毒性機率與藥效機率的組合情境下進行模擬,比較本文的模式輔助之兩階段設計與目前的單劑量漸增設計或傳統兩階段設計的表現。模擬結果顯示本文提出的設計在正確估計最佳生物劑量與合理的配置劑量方面與其他早期臨床設計具有競爭力,同時在時間成本的控管方面優於單劑量漸增設計。
摘要(英) Early phase clinical trials for cancer research aim to estimate the optimal biologic dose (OBD) of the targeted drug under study where the OBD is the dose gives the largest efficacy probability but the toxicity probability is less than the targeted toxicity probability (TTP). Two-stage designs are considered for the early phase clinical trials. In the first stage, the mTPI-2 design is used to adaptively assign doses to patients based on the binary data of toxicity. In the second stage, cohort design is employed where the set of dose levels with acceptable toxicity is determined, and then the OBD is found in the set based on the efficacy response. The trial is early terminated and declared invalid if the toxicity is too strong or the effect is insufficient. If the trial continues, appropriate dose levels are determined and patients are randomly assigned adaptively or balancedly. When the number of patients reaches a predetermined number, we stop the trial and estimate the OBD. Since there are two different randomized designs in the second stage, the two-stage designs are denoted as mTPI2-ARD and mTPI2-BRD, respectively. This article also modify the two-stage designs for the situation with late-onset toxicity or delayed effect in order to shorten the trial time as denoted by mTPI2L-ARD and mTPI2L-BRD, respectively. The proposed two-stage designs, adaptively escalating doses based on the accumulated toxicity and efficacy responses, not only reduce the risk of assigning over-toxic doses to patients but also increase the probability of patients receiving effective doses. Moreover, the proposed designs do not assume any specific dose-toxicity or dose-efficacy model. In fact, the proposed designs are model-assisted two-stage designs because they use only a conjugate prior distributions for the toxicity probability and the efficacy probability in the Bayesian analysis. Finally, the performances of the two-stage designs comparing to the single-dose ascending designs or the previous two-stage design are investigated in a simulation study under various scenarios of toxicity and efficacy probabilities. The results of the simulation study show that the proposed two-stage designs are competitive to other early clinical designs in estimating the OBD with more rational dose assignment and outperform the competitive single-dose ascending designs in time management.
關鍵字(中) ★ 貝氏方法
★ 最佳生物劑量
★ 二階段設計
★ 毒性晚發
★ 藥效延遲
關鍵字(英) ★ Bayesian method
★ Optimal biological dose
★ Two-stage design
★ Late-onset toxicity
★ Delayed response
論文目次 摘要 i
Abstract ii
致謝辭 iv
目錄 v
圖目次 vii
表目次 ix
第一章 研究動機及目的 1
第二章 文獻回顧 4
2.1 第一期臨床試驗設計 4
2.2 早期臨床試驗設計 8
2.2.1 兩階段設計 8
2.2.2 Isotonic設計 10
2.2.3 TEPI設計 11
2.2.4 STEIN設計 13
第三章 模式輔助之兩階段設計 17
3.1 試驗設計 17
3.2 劑量配置方法 18
3.3 晚發毒性與藥效延遲試驗設計 22
第四章 模擬研究 24
4.1模擬研究設計 24
4.2 模擬研究結果 25
第五章 實例分析 29
5.1實例介紹 29
5.2 實例應用 30
5.3 實例應用結果 32
第六章 結論與未來研究 34
參考文獻 36
參考文獻 Cheung, Y.K. & Chappell, R. (2000) Sequential Designs for Phase I Clinical Trials with Late-
Onset Toxicities. Biometrics; 56:1177-1182.
Druker, B.J., Talpaz, M., Resta, D.J., Peng, B., Buchdunger, E., Ford, J.M., Lydon, N.B., Kantarjian, H., Capdeville, R., Ohno-Jones, S. & Sawyers, C.L. (2001) Efficacy and Safety of A Specific Inhibitor of the BCR-ABL Tyrosine Kinase in Chronic Myeloid Leukemia. The New England Journal of Medicine; 344:1031-1037.
Druker, B.J. (2002) Perspectives on the development of a molecularly targeted agent. Cancer Cell; 1:31-36.
Guo, W., Wang, S.J., Yang, S., Lynn, H. & Ji, Y. (2017) A Bayesian interval dose-finding design addressing Ockham’s razor: MTPI-2. Contemporary Clinical Trials; 58:23-33.
Hoering, A., LeBlanc, M. & Crowley, J. (2011) Seamless Phase I-II Trial Design for Assessing Toxicity and Efficacy. Clinical Cancer Research; 17:640-646.
Hoering, A., Mitchell, A., LeBlanc, M. & Crowley, J. (2013) Early phase trial design for assessing several dose levels for toxicity and efficacy for targeted agents. Clinical Trials; 10:422-429.
Ji, Y., Li, Y. & Bekele, N. (2007) Dose-finding in phase I clinical trials based on toxicity probability intervals. Clinical Trials; 4:235-244.

Ji, Y., Liu, P., Li, Y. & Bekele, N. (2010). A modified toxicity probability interval method for dose-finding trials. Clinical Trials; 7:653-663.
Liu, S. & Yuan, Y. (2015) Bayesian optimal interval designs for phase I clinical trials. Journal of the Royal Statistical Society: Series C Applied Statistics; 64:507-523.
Li, D.H., Whitmore, J.B., Guo, W. & Ji, Y. (2017) Toxicity and Efficacy Probability Interval Design for Phase I Adoptive Cell Therapy Dose-Finding Clinical Trials. Clinical Cancer Research; 23:13-20
Lin, R. & Yin, G. (2017) STEIN: A simple toxicity and efficacy interval design for seamless phase I/II clinical trials. Statistics in medicine; 36:4106-4120.
Lin, R. & Yuan, Y. (2018) Time-to-Event Model-Assisted Designs to Accelerate Phase I Clinical Trials. arXiv:1807.08393.
Massey, F.J. (1951) The Kolmogorov-Smirnov Test for Goodness of Fit. Journal of the American Statistical Association; 46:68-78.
O′Quigley, J., Pepe, M. & Fisher, L. (1990) Continual Reassessment Method: A Practical Design for Phase 1 Clinical Trials in Cancer. Biometrics; 46:33-48.
Simon, R., Wittes, R.E. & Ellenberg, S.S. (1985) Randomized phase II clinical trials. Cancer treatment reports; 69:1375-1381.
Storer, B.E. (1989) Design and Analysis of Phase I Clinical Trials. Biometrics; 45:925-937.

Yan, F., Mandrekar, S.J. & Yuan, Y. (2017) Keyboard: A Novel Bayesian Toxicity Probability Interval Design for Phase I Clinical Trials. Clinical Cancer Research; 23:3994-4003.
Zang, Y., Lee, J.J. & Yuan, Y. (2014) Adaptive designs for identifying optimal biological dose for molecularly targeted agents. Clinical Trials; 11:319-327.
Zhou, H., Murray, T.A., Pan, H. & Yuan, Y. (2018) Comparative review of novel model‐assisted designs for phase I clinical trials. Statistics in Medicine; 37:2208-2222.
Zhou, H., Yuan, Y. & Nie, L. (2018) Accuracy, Safety, and Reliability of Novel Phase I Trial Designs. Clinical Cancer Research; 24:4357-4364.
葉峻瑋,「鑑別標靶藥最佳生物劑量之穩健二階段設計」,國立中央大學,碩士論文,民國108年。
指導教授 陳玉英(Yuh-Ing Chen) 審核日期 2020-6-29
推文 facebook   plurk   twitter   funp   google   live   udn   HD   myshare   reddit   netvibes   friend   youpush   delicious   baidu   
網路書籤 Google bookmarks   del.icio.us   hemidemi   myshare   

若有論文相關問題,請聯絡國立中央大學圖書館推廣服務組 TEL:(03)422-7151轉57407,或E-mail聯絡  - 隱私權政策聲明